BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22832200)

  • 1. Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging.
    Vergen J; Hecht C; Zholudeva LV; Marquardt MM; Hallworth R; Nichols MG
    Microsc Microanal; 2012 Aug; 18(4):761-70. PubMed ID: 22832200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level.
    Yu Q; Heikal AA
    J Photochem Photobiol B; 2009 Apr; 95(1):46-57. PubMed ID: 19179090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.
    Miura Y
    Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic mapping of glioblastoma stem cells reveals NADH fluxes associated with glioblastoma phenotype and survival.
    Schroeder A; Pointer K; Clark P; Datta R; Kuo J; Eliceiri K
    J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32216192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.
    Skala MC; Riching KM; Bird DK; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; Keely PJ; Ramanujam N
    J Biomed Opt; 2007; 12(2):024014. PubMed ID: 17477729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models.
    Cong A; Pimenta RML; Lee HB; Mereddy V; Holy J; Heikal AA
    Cytometry A; 2019 Jan; 95(1):80-92. PubMed ID: 30343512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy.
    Tiede LM; Rocha-Sanchez SM; Hallworth R; Nichols MG; Beisel K
    J Biomed Opt; 2007; 12(2):021004. PubMed ID: 17477711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding.
    Chia TH; Williamson A; Spencer DD; Levene MJ
    Opt Express; 2008 Mar; 16(6):4237-49. PubMed ID: 18542519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon fluorescence lifetime imaging microscopy of NADH metabolism in HIV-1 infected cells and tissues.
    Snyder GA; Kumar S; Lewis GK; Ray K
    Front Immunol; 2023; 14():1213180. PubMed ID: 37662898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy.
    Alam SR; Wallrabe H; Christopher KG; Siller KH; Periasamy A
    Sci Rep; 2022 Jul; 12(1):11938. PubMed ID: 35831321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.
    Bird DK; Yan L; Vrotsos KM; Eliceiri KW; Vaughan EM; Keely PJ; White JG; Ramanujam N
    Cancer Res; 2005 Oct; 65(19):8766-73. PubMed ID: 16204046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon autofluorescence microscopy of multicolor excitation.
    Li D; Zheng W; Qu JY
    Opt Lett; 2009 Jan; 34(2):202-4. PubMed ID: 19148255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response.
    Baraghis E; Devor A; Fang Q; Srinivasan VJ; Wu W; Lesage F; Ayata C; Kasischke KA; Boas DA; Sakadzić S
    J Biomed Opt; 2011 Oct; 16(10):106003. PubMed ID: 22029350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of autofluorescence from intracellular proteins in multiphoton fluorescence lifetime imaging.
    Malak M; James J; Grantham J; Ericson MB
    Sci Rep; 2022 Oct; 12(1):16584. PubMed ID: 36198710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of cadmium-induced cytotoxicity using two-photon excitation endogenous fluorescence microscopy.
    Li D; Yang MS; Lin T; Zheng W; Qu JY
    J Biomed Opt; 2009; 14(5):054028. PubMed ID: 19895130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging.
    Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I
    J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions.
    Blinova K; Carroll S; Bose S; Smirnov AV; Harvey JJ; Knutson JR; Balaban RS
    Biochemistry; 2005 Feb; 44(7):2585-94. PubMed ID: 15709771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the metabolic index using the fluorescence lifetime of free and bound nicotinamide adenine dinucleotide using the phasor approach.
    Ranjit S; Malacrida L; Stakic M; Gratton E
    J Biophotonics; 2019 Nov; 12(11):e201900156. PubMed ID: 31194290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.