BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 22832277)

  • 1. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition.
    Amit M; Donyo M; Hollander D; Goren A; Kim E; Gelfman S; Lev-Maor G; Burstein D; Schwartz S; Postolsky B; Pupko T; Ast G
    Cell Rep; 2012 May; 1(5):543-56. PubMed ID: 22832277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure.
    Gelfman S; Cohen N; Yearim A; Ast G
    Genome Res; 2013 May; 23(5):789-99. PubMed ID: 23502848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of splice signal migration from exon to intron during intron evolution.
    Sverdlov AV; Rogozin IB; Babenko VN; Koonin EV
    Curr Biol; 2003 Dec; 13(24):2170-4. PubMed ID: 14680632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene architecture directs splicing outcome in separate nuclear spatial regions.
    Tammer L; Hameiri O; Keydar I; Roy VR; Ashkenazy-Titelman A; Custódio N; Sason I; Shayevitch R; Rodríguez-Vaello V; Rino J; Lev Maor G; Leader Y; Khair D; Aiden EL; Elkon R; Irimia M; Sharan R; Shav-Tal Y; Carmo-Fonseca M; Ast G
    Mol Cell; 2022 Mar; 82(5):1021-1034.e8. PubMed ID: 35182478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons.
    Gelfman S; Burstein D; Penn O; Savchenko A; Amit M; Schwartz S; Pupko T; Ast G
    Genome Res; 2012 Jan; 22(1):35-50. PubMed ID: 21974994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
    Fox-Walsh KL; Dou Y; Lam BJ; Hung SP; Baldi PF; Hertel KJ
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16176-81. PubMed ID: 16260721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Investigating the intron recognition mechanism in eukaryotes.
    Collins L; Penny D;
    Mol Biol Evol; 2006 May; 23(5):901-10. PubMed ID: 16371412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary implications of intron-exon distribution and the properties and sequences of the RPL10A gene in eukaryotes.
    Del Campo EM; Casano LM; Barreno E
    Mol Phylogenet Evol; 2013 Mar; 66(3):857-67. PubMed ID: 23201395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns.
    Long M; Deutsch M
    Mol Biol Evol; 1999 Nov; 16(11):1528-34. PubMed ID: 10555284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection.
    McCullough AJ; Berget SM
    Mol Cell Biol; 1997 Aug; 17(8):4562-71. PubMed ID: 9234714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exon definition as a potential negative force against intron losses in evolution.
    Niu DK
    Biol Direct; 2008 Nov; 3():46. PubMed ID: 19014515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short nucleotide sequences signal spliceosomal binding in nucleic acids.
    Reddy KR; Mitra CK
    Indian J Biochem Biophys; 2009 Oct; 46(5):353-9. PubMed ID: 20027863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency.
    Fukao T; Sakurai S; Rolland MO; Zabot MT; Schulze A; Yamada K; Kondo N
    Mol Genet Metab; 2006 Nov; 89(3):280-2. PubMed ID: 16765626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Test of the combinatorial model of intron recognition in a native maize gene.
    Latijnhouwers MJ; Pairoba CF; Brendel V; Walbot V; Carle-Urisote JC
    Plant Mol Biol; 1999 Nov; 41(5):637-44. PubMed ID: 10645723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 5' leader of plant PgiC has an intron: the leader shows both the loss and maintenance of constraints compared with introns and exons in the coding region.
    Gottlieb LD; Ford VS
    Mol Biol Evol; 2002 Sep; 19(9):1613-23. PubMed ID: 12200488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical analysis of the exon-intron structure of higher and lower eukaryote genes.
    Kriventseva EV; Gelfand MS
    J Biomol Struct Dyn; 1999 Oct; 17(2):281-8. PubMed ID: 10563578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.