BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22832470)

  • 1. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals.
    Kao PC; Srivastava S; Agrawal SK; Scholz JP
    Gait Posture; 2013 Jan; 37(1):113-20. PubMed ID: 22832470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error Fields: Personalized robotic movement training that augments one's more likely mistakes.
    Aghamohammadi NR; Bittmann MF; Klamroth-Marganska V; Riener R; Huang FC; Patton JL
    Res Sq; 2023 Jul; ():. PubMed ID: 37502877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait.
    Hsiao H; Knarr BA; Higginson JS; Binder-Macleod SA
    Hum Mov Sci; 2015 Feb; 39():212-21. PubMed ID: 25498289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error augmentation feedback for lateral weight shifting.
    O'Brien K; Crowell CR; Schmiedeler J
    Gait Posture; 2017 May; 54():178-182. PubMed ID: 28324753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor adaptation on a split-belt treadmill in adults with stroke: a systematic review.
    Fragoso-Espinosa P; Alguacil-Diego IM; Molina-Rueda F
    An Sist Sanit Navar; 2023 Apr; 46(1):. PubMed ID: 37166234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure to improve task performance after visuomotor training with error reduction feedback for young adults.
    Lin YT; Chen YC; Chang GC; Hwang IS
    Front Physiol; 2023; 14():1066325. PubMed ID: 36969593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quick balance skill improvement after short-term training with error amplification feedback for older adults.
    Chen YC; Chang GC; Huang WM; Hwang IS
    NPJ Sci Learn; 2023 Jan; 8(1):3. PubMed ID: 36635300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper-Limb Robot-Assisted Therapy Based on Visual Error Augmentation in Virtual Reality for Motor Recovery and Kinematics after Chronic Hemiparetic Stroke: A Feasibility Study.
    Cho KH; Hong MR; Song WK
    Healthcare (Basel); 2022 Jun; 10(7):. PubMed ID: 35885713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the robotic-assistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: sub-analysis of a randomized clinical trial.
    Takebayashi T; Takahashi K; Okita Y; Kubo H; Hachisuka K; Domen K
    J Neuroeng Rehabil; 2022 Feb; 19(1):25. PubMed ID: 35216603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to walk with a wearable robot in 880 simple steps: a pilot study on motor adaptation.
    Haufe FL; Kober AM; Wolf P; Riener R; Xiloyannis M
    J Neuroeng Rehabil; 2021 Nov; 18(1):157. PubMed ID: 34724940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered active control of step width in response to mediolateral leg perturbations while walking.
    Reimold NK; Knapp HA; Henderson RE; Wilson L; Chesnutt AN; Dean JC
    Sci Rep; 2020 Jul; 10(1):12197. PubMed ID: 32699328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Gait Analysis Metric for Gait Retraining.
    Ramakrishnan T; Kim SH; Reed KB
    Appl Bionics Biomech; 2019; 2019():1286864. PubMed ID: 31814843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations.
    McCrum C; Karamanidis K; Grevendonk L; Zijlstra W; Meijer K
    Geroscience; 2020 Feb; 42(1):39-49. PubMed ID: 31776885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Motion of Body Center of Mass During Walking: A Review Oriented to Clinical Applications.
    Tesio L; Rota V
    Front Neurol; 2019; 10():999. PubMed ID: 31616361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study.
    Kim SH; Huizenga DE; Handzic I; Ditwiler RE; Lazinski M; Ramakrishnan T; Bozeman A; Rose DZ; Reed KB
    J Neuroeng Rehabil; 2019 Aug; 16(1):106. PubMed ID: 31455358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error-augmentation gait training to improve gait symmetry in patients with non-traumatic lower limb amputation: A proof-of-concept study.
    Kline PW; Murray AM; Miller MJ; Fields T; Christiansen CL
    Prosthet Orthot Int; 2019 Aug; 43(4):426-433. PubMed ID: 31018771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review.
    Liu LY; Li Y; Lamontagne A
    J Neuroeng Rehabil; 2018 Jul; 15(1):65. PubMed ID: 29973250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable Damping Force Tunnel for Gait Training Using ALEX III.
    Stegall P; Zanotto D; Agrawal SK
    IEEE Robot Autom Lett; 2017 Jul; 2(3):1495-1501. PubMed ID: 29109981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of movement errors in modifying spatiotemporal gait asymmetry post stroke: a randomized controlled trial.
    Lewek MD; Braun CH; Wutzke C; Giuliani C
    Clin Rehabil; 2018 Feb; 32(2):161-172. PubMed ID: 28750549
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.