These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22832470)

  • 21. Robot assisted gait training with active leg exoskeleton (ALEX).
    Banala SK; Kim SH; Agrawal SK; Scholz JP
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):2-8. PubMed ID: 19211317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of assist-as-needed robotic gait training on the gait pattern post stroke: a randomized controlled trial.
    Alingh JF; Fleerkotte BM; Groen BE; Rietman JS; Weerdesteyn V; van Asseldonk EHF; Geurts ACH; Buurke JH
    J Neuroeng Rehabil; 2021 Feb; 18(1):26. PubMed ID: 33546733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery and compensation after robotic assisted gait training in chronic stroke survivors.
    De Luca A; Vernetti H; Capra C; Pisu I; Cassiano C; Barone L; Gaito F; Danese F; Antonio Checchia G; Lentino C; Giannoni P; Casadio M
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):826-838. PubMed ID: 29741134
    [No Abstract]   [Full Text] [Related]  

  • 24. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inducing self-selected human engagement in robotic locomotion training.
    Collins SH; Jackson RW
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650488. PubMed ID: 24187305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofeedback for robotic gait rehabilitation.
    Lünenburger L; Colombo G; Riener R
    J Neuroeng Rehabil; 2007 Jan; 4():1. PubMed ID: 17244363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lokomat: a therapeutic chance for patients with chronic hemiplegia.
    Uçar DE; Paker N; Buğdaycı D
    NeuroRehabilitation; 2014; 34(3):447-53. PubMed ID: 24463231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Pelvic Corrective Force With Visual Feedback Improves Paretic Leg Muscle Activities and Gait Performance After Stroke.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2353-2360. PubMed ID: 31675335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Test of a customized compliant ankle rehabilitation device in unpowered mode.
    Murphy P; Adolf G; Daly S; Bolton M; Maurice O; Bonia T; Mavroidis C; Yen SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3057-60. PubMed ID: 25570636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ankle training with a robotic device improves hemiparetic gait after a stroke.
    Forrester LW; Roy A; Krebs HI; Macko RF
    Neurorehabil Neural Repair; 2011 May; 25(4):369-77. PubMed ID: 21115945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis.
    Kao PC; Ferris DP
    Gait Posture; 2009 Feb; 29(2):230-6. PubMed ID: 18838269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation.
    Krishnan C; Ranganathan R; Dhaher YY; Rymer WZ
    PLoS One; 2013; 8(10):e77370. PubMed ID: 24146986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.
    Bonnyaud C; Pradon D; Zory R; Bensmail D; Vuillerme N; Roche N
    Top Stroke Rehabil; 2013; 20(6):509-18. PubMed ID: 24273298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.
    Yoon J; Park HS; Damiano DL
    J Neuroeng Rehabil; 2012 Aug; 9():62. PubMed ID: 22929169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task.
    Marchal-Crespo L; Michels L; Jaeger L; López-Olóriz J; Riener R
    Front Neurosci; 2017; 11():526. PubMed ID: 29021739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trainer variability during step training after spinal cord injury: Implications for robotic gait-training device design.
    Galvez JA; Budovitch A; Harkema SJ; Reinkensmeyer DJ
    J Rehabil Res Dev; 2011; 48(2):147-60. PubMed ID: 21480089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An arm for a leg: Adapting a robotic arm for gait rehabilitation.
    Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.