These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22832472)

  • 21. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An above-knee prosthesis with a system of energy recovery: a technical note.
    Farber BS; Jacobson JS
    J Rehabil Res Dev; 1995 Nov; 32(4):337-48. PubMed ID: 8770798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling propulsive forces in gait initiation in transfemoral amputees.
    van Keeken HG; Vrieling AH; Hof AL; Halbertsma JP; Schoppen T; Postema K; Otten B
    J Biomech Eng; 2008 Feb; 130(1):011002. PubMed ID: 18298178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-Slope and Level Walking Strategies During Swing in Individuals With Lower Limb Amputation.
    Villa C; Loiret I; Langlois K; Bonnet X; Lavaste F; Fodé P; Pillet H
    Arch Phys Med Rehabil; 2017 Jun; 98(6):1149-1157. PubMed ID: 27832952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.
    Segal AD; Orendurff MS; Czerniecki JM; Schoen J; Klute GK
    Gait Posture; 2011 Jan; 33(1):41-7. PubMed ID: 20974535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait.
    Houdijk H; Appelman FM; Van Velzen JM; Van der Woude LH; Van Bennekom CA
    J Rehabil Res Dev; 2008; 45(9):1335-42. PubMed ID: 19319757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical function, gait, and dynamic balance of transfemoral amputees using two mechanical passive prosthetic knee devices.
    Lythgo N; Marmaras B; Connor H
    Arch Phys Med Rehabil; 2010 Oct; 91(10):1565-70. PubMed ID: 20875515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Swing phase control with knee friction in juvenile amputees.
    Hicks R; Tashman S; Cary JM; Altman RF; Gage JR
    J Orthop Res; 1985; 3(2):198-201. PubMed ID: 3998896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Walking characteristics of runners with a transfemoral or knee-disarticulation prosthesis.
    Kobayashi T; Hisano G; Namiki Y; Hashizume S; Hobara H
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105132. PubMed ID: 32768802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Obstacle crossing in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2007 Oct; 26(4):587-94. PubMed ID: 17275306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The independent effect of added mass on the stability of the sagittal plane leg kinematics during steady-state human walking.
    Arellano CJ; O'Connor DP; Layne C; Kurz MJ
    J Exp Biol; 2009 Jun; 212(Pt 12):1965-70. PubMed ID: 19483014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial.
    Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS
    Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses.
    Furse A; Cleghorn W; Andrysek J
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gait patterns in transtibial amputee fallers vs. non-fallers: biomechanical differences during level walking.
    Vanicek N; Strike S; McNaughton L; Polman R
    Gait Posture; 2009 Apr; 29(3):415-20. PubMed ID: 19071021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does having a computerized prosthetic knee influence cognitive performance during amputee walking?
    Williams RM; Turner AP; Orendurff M; Segal AD; Klute GK; Pecoraro J; Czerniecki J
    Arch Phys Med Rehabil; 2006 Jul; 87(7):989-94. PubMed ID: 16813788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling horizontal deceleration during gait termination in transfemoral amputees: measurements and simulations.
    van Keeken HG; Vrieling AH; Hof AL; Postema K; Otten B
    Med Eng Phys; 2013 May; 35(5):583-90. PubMed ID: 22901854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foot trajectories and loading rates in a transfemoral amputee for six different commercial prosthetic knees: An indication of adaptability.
    Abouhossein A; Awad MI; Maqbool HF; Crisp C; Stewart TD; Messenger N; Richardson RC; Dehghani-Sanij AA; Bradley D
    Med Eng Phys; 2019 Jun; 68():46-56. PubMed ID: 30979583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.