BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22832550)

  • 1. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagating surface plasmon resonance on microhole arrays.
    Live LS; Bolduc OR; Masson JF
    Anal Chem; 2010 May; 82(9):3780-7. PubMed ID: 20356057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing.
    Live LS; Dhawan A; Gibson KF; Poirier-Richard HP; Graham D; Canva M; Vo-Dinh T; Masson JF
    Anal Bioanal Chem; 2012 Dec; 404(10):2859-68. PubMed ID: 22760504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance.
    Jia P; Jiang H; Sabarinathan J; Yang J
    Nanotechnology; 2013 May; 24(19):195501. PubMed ID: 23579785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms.
    Kegel LL; Boyne D; Booksh KS
    Anal Chem; 2014 Apr; 86(7):3355-64. PubMed ID: 24499170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography.
    Murray-Methot MP; Menegazzo N; Masson JF
    Analyst; 2008 Dec; 133(12):1714-21. PubMed ID: 19082074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled plasmonic nanohole arrays.
    Lee SH; Bantz KC; Lindquist NC; Oh SH; Haynes CL
    Langmuir; 2009 Dec; 25(23):13685-93. PubMed ID: 19831350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing.
    Cervantes Tellez GA; Hassan S; Tait RN; Berini P; Gordon R
    Lab Chip; 2013 Jul; 13(13):2541-6. PubMed ID: 23478567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals.
    Stewart ME; Yao J; Maria J; Gray SK; Rogers JA; Nuzzo RG
    Anal Chem; 2009 Aug; 81(15):5980-9. PubMed ID: 19591455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography.
    Lee SW; Lee KS; Ahn J; Lee JJ; Kim MG; Shin YB
    ACS Nano; 2011 Feb; 5(2):897-904. PubMed ID: 21222487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal enhancement of protein binding by electrodeposited gold nanostructures for applications in Kretschmann-type SPR sensors.
    Nagase N; Terao K; Miyanishi N; Tamai K; Uchiyama N; Suzuki T; Takao H; Shimokawa F; Oohira F
    Analyst; 2012 Nov; 137(21):5034-40. PubMed ID: 23000888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Optical Cavity on Refractive Index Sensitivity of Gold Nanohole Arrays.
    Shokova MA; Bochenkov VE
    Biosensors (Basel); 2023 Dec; 13(12):. PubMed ID: 38131798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance sensing properties of a 3D nanostructure consisting of aligned nanohole and nanocone arrays.
    Najiminaini M; Ertorer E; Kaminska B; Mittler S; Carson JJ
    Analyst; 2014 Apr; 139(8):1876-82. PubMed ID: 24527489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays.
    Kim SA; Byun KM; Kim K; Jang SM; Ma K; Oh Y; Kim D; Kim SG; Shuler ML; Kim SJ
    Nanotechnology; 2010 Sep; 21(35):355503. PubMed ID: 20693616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer.
    Yonzon CR; Jeoung E; Zou S; Schatz GC; Mrksich M; Van Duyne RP
    J Am Chem Soc; 2004 Oct; 126(39):12669-76. PubMed ID: 15453801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale patterning of plasmonic metamaterials.
    Henzie J; Lee MH; Odom TW
    Nat Nanotechnol; 2007 Sep; 2(9):549-54. PubMed ID: 18654366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.