BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22832889)

  • 1. Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis.
    Aggarwal S; Karimi IA; Kilbane Ii JJ; Lee DY
    Mol Biosyst; 2012 Oct; 8(10):2724-32. PubMed ID: 22832889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flux-based analysis of sulfur metabolism in desulfurizing strains of Rhodococcus erythropolis.
    Aggarwal S; Karimi IA; Lee DY
    FEMS Microbiol Lett; 2011 Feb; 315(2):115-21. PubMed ID: 21182538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli].
    Li GQ; Ma T; Li JH; Li H; Liu RL
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):275-9. PubMed ID: 16736591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodesulfurization Induces Reprogramming of Sulfur Metabolism in Rhodococcus qingshengii IGTS8: Proteomics and Untargeted Metabolomics.
    Hirschler A; Carapito C; Maurer L; Zumsteg J; Villette C; Heintz D; Dahl C; Al-Nayal A; Sangal V; Mahmoud H; Van Dorsselaer A; Ismail W
    Microbiol Spectr; 2021 Oct; 9(2):e0069221. PubMed ID: 34468196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis.
    Li GQ; Li SS; Zhang ML; Wang J; Zhu L; Liang FL; Liu RL; Ma T
    Appl Environ Microbiol; 2008 Feb; 74(4):971-6. PubMed ID: 18165370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes.
    Ma T; Li G; Li J; Liang F; Liu R
    Biotechnol Lett; 2006 Jul; 28(14):1095-100. PubMed ID: 16810451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2.
    Ishii Y; Konishi J; Okada H; Hirasawa K; Onaka T; Suzuki M
    Biochem Biophys Res Commun; 2000 Apr; 270(1):81-8. PubMed ID: 10733908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing Desulfurization in the Model Biocatalyst
    Martzoukou O; Amillis S; Glekas PD; Breyanni D; Avgeris M; Scorilas A; Kekos D; Pachnos M; Mavridis G; Mamma D; Hatzinikolaou DG
    Appl Environ Microbiol; 2023 Feb; 89(2):e0197022. PubMed ID: 36688659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of the desulfurization activity among several bacteria and analysis of the conservation of their desulfurization genes].
    Xiong XC; Li WL; Li X; Xing JM; Liu HZ
    Wei Sheng Wu Xue Bao; 2005 Oct; 45(5):733-7. PubMed ID: 16342766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1.
    Matsubara T; Ohshiro T; Nishina Y; Izumi Y
    Appl Environ Microbiol; 2001 Mar; 67(3):1179-84. PubMed ID: 11229908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277.
    Maass D; Mayer DA; Moritz DE; Oliveira D; de Souza AA; Souza SM
    Appl Biochem Biotechnol; 2015 Oct; 177(3):759-70. PubMed ID: 26201481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture.
    Konishi M; Kishimoto M; Omasa T; Katakura Y; Shioya S; Ohtake H
    J Biosci Bioeng; 2005 Mar; 99(3):259-63. PubMed ID: 16233786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the emulsion characteristics of Rhodococcus erythropolis and Escherichia coli SOXC-5 cells expressing biodesulfurization genes.
    Borole AP; Kaufman EN; Grossman MJ; Minak-Bernero V; Bare R; Lee MK
    Biotechnol Prog; 2002; 18(1):88-93. PubMed ID: 11822905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro.
    Xi L; Squires CH; Monticello DJ; Childs JD
    Biochem Biophys Res Commun; 1997 Jan; 230(1):73-5. PubMed ID: 9020064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain.
    Tanaka Y; Matsui T; Konishi J; Maruhashi K; Kurane R
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):325-8. PubMed ID: 12111165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymology and molecular biology of prokaryotic sulfite oxidation.
    Kappler U; Dahl C
    FEMS Microbiol Lett; 2001 Sep; 203(1):1-9. PubMed ID: 11557133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon.
    Li GQ; Ma T; Li SS; Li H; Liang FL; Liu RL
    Biosci Biotechnol Biochem; 2007 Apr; 71(4):849-54. PubMed ID: 17420595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1.
    Guan LJ; Lee WC; Wang S; Ohshiro T; Izumi Y; Ohtsuka J; Tanokura M
    FEBS J; 2015 Aug; 282(16):3126-35. PubMed ID: 25627402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures.
    Kawaguchi H; Kobayashi H; Sato K
    J Biosci Bioeng; 2012 Mar; 113(3):360-6. PubMed ID: 22099375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate.
    Tanaka Y; Yoshikawa O; Maruhashi K; Kurane R
    Arch Microbiol; 2002 Nov; 178(5):351-7. PubMed ID: 12375103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.