These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22833)

  • 21. [Calcium intake and acetylcholine liberation in the electric organ of the torpedo].
    Babel-Guérin E; Dunant Y
    C R Acad Hebd Seances Acad Sci D; 1972 Dec; 275(25):2961-4. PubMed ID: 4631961
    [No Abstract]   [Full Text] [Related]  

  • 22. Stoichiometries of acetylcholine uptake, release, and drug inhibition in Torpedo synaptic vesicles: heterogeneity in acetylcholine transport and storage.
    Anderson DC; Bahr BA; Parsons SM
    J Neurochem; 1986 Apr; 46(4):1207-13. PubMed ID: 3950624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors required for calcium dependent acetylcholine release from isolated torpedo synaptic vesicles.
    Michaelson DM; Pinchasi I; Sokolovsky M
    Biochem Biophys Res Commun; 1978 Feb; 80(3):547-52. PubMed ID: 204306
    [No Abstract]   [Full Text] [Related]  

  • 24. Metal ion content of cholinergic synaptic vesicles isolated from the electric organ of Torpedo: effect of stimulation-induced transmitter release.
    Schmidt R; Zimmermann H; Whittaker VP
    Neuroscience; 1980; 5(3):625-38. PubMed ID: 7374962
    [No Abstract]   [Full Text] [Related]  

  • 25. Passive uptake of acetylcholine and other organic cations by synaptic vesicles from Torpedo electric organ.
    Carpenter RS; Koenigsberger R; Parsons SM
    Biochemistry; 1980 Sep; 19(18):4373-9. PubMed ID: 6158334
    [No Abstract]   [Full Text] [Related]  

  • 26. Compared effects of two vesicular acetylcholine uptake blockers, AH5183 and cetiedil, on cholinergic functions in Torpedo synaptosomes: acetylcholine synthesis, choline transport, vesicular uptake, and evoked acetylcholine release.
    Gaudry-Talarmain YM; Diebler MF; O'Regan S
    J Neurochem; 1989 Mar; 52(3):822-9. PubMed ID: 2493069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bicarbonate and magnesium ion-ATP dependent stimulation of acetylcholine uptake by Torpedo electric organ synaptic vesicles.
    Koenigsberger R; Parsons SM
    Biochem Biophys Res Commun; 1980 May; 94(1):305-12. PubMed ID: 7387697
    [No Abstract]   [Full Text] [Related]  

  • 28. Enkephalin uptake into cholinergic synaptic vesicles and nerve terminals.
    Michaelson DM; Wien-Naor D
    Ann N Y Acad Sci; 1987; 493():234-51. PubMed ID: 3296908
    [No Abstract]   [Full Text] [Related]  

  • 29. The molecular neurobiology of the acetylcholine receptor.
    McCarthy MP; Earnest JP; Young EF; Choe S; Stroud RM
    Annu Rev Neurosci; 1986; 9():383-413. PubMed ID: 2423008
    [No Abstract]   [Full Text] [Related]  

  • 30. Aspects of acetylcholine metabolism in the electric organ of Torpedo marmorata.
    Marchbanks RM; Israël M
    J Neurochem; 1971 Mar; 18(3):439-48. PubMed ID: 5559253
    [No Abstract]   [Full Text] [Related]  

  • 31. Linkage of the acetylcholine transporter-vesamicol receptor to proteoglycan in synaptic vesicles.
    Bahr BA; Noremberg K; Rogers GA; Hicks BW; Parsons SM
    Biochemistry; 1992 Jun; 31(25):5778-84. PubMed ID: 1319202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholinergic synaptic vesicles are metabolically and biophysically heterogeneous even in resting terminals.
    Whittaker VP
    Brain Res; 1990 Mar; 511(1):113-21. PubMed ID: 2331609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of neurotransmitter release upon phospholipid composition and fatty acid turnover in synaptic vesicles of Torpedo marmorata electric organ and guinea-pig cerebral cortex.
    Baker RR; Dowdall MJ; Whittaker VP
    Biochem Soc Trans; 1975; 3(2):263-5. PubMed ID: 236945
    [No Abstract]   [Full Text] [Related]  

  • 34. Torpedo synaptosomes: evidence for synaptic vesicle fusion accompanying Ca2+-induced ionophore (A23187)-mediated acetylcholine release.
    Michaelson DM; Bilen J; Volsky D
    Brain Res; 1978 Oct; 154(2):409-14. PubMed ID: 356931
    [No Abstract]   [Full Text] [Related]  

  • 35. Induced acetylcholine release from active purely cholinergic Torpedo synaptosomes.
    Michaelson DM; Sokolovsky M
    J Neurochem; 1978 Jan; 30(1):217-30. PubMed ID: 202677
    [No Abstract]   [Full Text] [Related]  

  • 36. Evidence for heterogeneous pools of acetylcholine in isolated cholinergic synaptic vesicles.
    Dowdall MJ; Zimmermann H
    Brain Res; 1974 May; 71(1):160-6. PubMed ID: 4821416
    [No Abstract]   [Full Text] [Related]  

  • 37. Isolation of synaptic vesicles from Narcine brasiliensis electric organ: some influences on release of vesicular acetylcholine and ATP.
    Boyne AF
    Brain Res; 1976 Sep; 114(3):481-91. PubMed ID: 953769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic parameters for the vesicular acetylcholine transporter: two protons are exchanged for one acetylcholine.
    Nguyen ML; Cox GD; Parsons SM
    Biochemistry; 1998 Sep; 37(38):13400-10. PubMed ID: 9748347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classical noncholinergic neurotransmitters and the vesicular transport system for acetylcholine.
    Clarkson ED; Bahr BA; Parsons SM
    J Neurochem; 1993 Jul; 61(1):22-8. PubMed ID: 8099949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles.
    Anderson DC; King SC; Parsons SM
    Biochemistry; 1982 Jun; 21(13):3037-43. PubMed ID: 6213263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.