These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22833057)

  • 1. An intact kidney slice model to investigate vasa recta properties and function in situ.
    Crawford C; Kennedy-Lydon T; Sprott C; Desai T; Sawbridge L; Munday J; Unwin RJ; Wildman SS; Peppiatt-Wildman CM
    Nephron Physiol; 2012; 120(3):p17-31. PubMed ID: 22833057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes.
    Kennedy-Lydon T; Crawford C; Wildman SS; Peppiatt-Wildman CM
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F648-57. PubMed ID: 26202223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter.
    Crawford C; Kennedy-Lydon TM; Callaghan H; Sprott C; Simmons RL; Sawbridge L; Syme HM; Unwin RJ; Wildman SS; Peppiatt-Wildman CM
    Acta Physiol (Oxf); 2011 Jul; 202(3):241-51. PubMed ID: 21624094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow?
    Crawford C; Wildman SS; Kelly MC; Kennedy-Lydon TM; Peppiatt-Wildman CM
    Front Physiol; 2013; 4():307. PubMed ID: 24194721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubulovascular nitric oxide crosstalk: buffering of angiotensin II-induced medullary vasoconstriction.
    Dickhout JG; Mori T; Cowley AW
    Circ Res; 2002 Sep; 91(6):487-93. PubMed ID: 12242266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network.
    Lilley RJ; Taylor KD; Wildman SSP; Peppiatt-Wildman CM
    Front Physiol; 2023; 14():1194803. PubMed ID: 37362447
    [No Abstract]   [Full Text] [Related]  

  • 7. Functional characterization of isolated, perfused outermedullary descending human vasa recta.
    Sendeski MM; Liu ZZ; Perlewitz A; Busch JF; Ikromov O; Weikert S; Persson PB; Patzak A
    Acta Physiol (Oxf); 2013 May; 208(1):50-6. PubMed ID: 23414239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II constriction of rat vasa recta is partially thromboxane dependent.
    Silldorff EP; Hilbun LR; Pallone TL
    Hypertension; 2002 Oct; 40(4):541-6. PubMed ID: 12364360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pericyte regulation of renal medullary blood flow.
    Pallone TL; Silldorff EP
    Exp Nephrol; 2001; 9(3):165-70. PubMed ID: 11340300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk.
    Mori T; O'Connor PM; Abe M; Cowley AW
    Hypertension; 2007 Jun; 49(6):1336-41. PubMed ID: 17470722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medullary thick ascending limb buffer vasoconstriction of renal outer-medullary vasa recta in salt-resistant but not salt-sensitive rats.
    O'Connor PM; Cowley AW
    Hypertension; 2012 Oct; 60(4):965-72. PubMed ID: 22926950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal pericytes: regulators of medullary blood flow.
    Kennedy-Lydon TM; Crawford C; Wildman SS; Peppiatt-Wildman CM
    Acta Physiol (Oxf); 2013 Feb; 207(2):212-25. PubMed ID: 23126245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine signaling in outer medullary descending vasa recta.
    Silldorff EP; Pallone TL
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R854-61. PubMed ID: 11171666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential controls calcium entry into descending vasa recta pericytes.
    Zhang Z; Rhinehart K; Pallone TL
    Am J Physiol Regul Integr Comp Physiol; 2002 Oct; 283(4):R949-57. PubMed ID: 12228065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of descending vasa recta pericyte membrane potential by angiotensin II.
    Pallone TL; Huang JM
    Am J Physiol Renal Physiol; 2002 Jun; 282(6):F1064-74. PubMed ID: 11997323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and perfusion of rat inner medullary vasa recta.
    Evans KK; Nawata CM; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Aug; 309(4):F300-4. PubMed ID: 26062876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive responses of rat descending vasa recta to ischemia.
    Zhang Z; Payne K; Pallone TL
    Am J Physiol Renal Physiol; 2018 Mar; 314(3):F373-F380. PubMed ID: 28814437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ANG II AT2 receptor modulates AT1 receptor-mediated descending vasa recta endothelial Ca2+ signaling.
    Rhinehart K; Handelsman CA; Silldorff EP; Pallone TL
    Am J Physiol Heart Circ Physiol; 2003 Mar; 284(3):H779-89. PubMed ID: 12424093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2.
    Pallone TL
    Am J Physiol; 1994 Jun; 266(6 Pt 2):F850-7. PubMed ID: 8023965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.