BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22833122)

  • 1. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens.
    Aoyama T; Hiwatashi Y; Shigyo M; Kofuji R; Kubo M; Ito M; Hasebe M
    Development; 2012 Sep; 139(17):3120-9. PubMed ID: 22833122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens.
    von Schwartzenberg K; Lindner AC; Gruhn N; Šimura J; Novák O; Strnad M; Gonneau M; Nogué F; Heyl A
    J Exp Bot; 2016 Feb; 67(3):667-79. PubMed ID: 26596764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens.
    Wang Y; Jiang L; Kong D; Meng J; Song M; Cui W; Song Y; Wang X; Liu J; Wang R; He Y; Chang C; Ju C
    New Phytol; 2024 Jun; 242(5):1996-2010. PubMed ID: 38571393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens.
    O'Donoghue MT; Chater C; Wallace S; Gray JE; Beerling DJ; Fleming AJ
    J Exp Bot; 2013 Sep; 64(12):3567-81. PubMed ID: 23888066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens.
    Lee KJ; Sakata Y; Mau SL; Pettolino F; Bacic A; Quatrano RS; Knight CD; Knox JP
    Plant Cell; 2005 Nov; 17(11):3051-65. PubMed ID: 16199618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified suppression subtractive hybridization identifies an AP2-containing protein involved in metal responses in Physcomitrella patens.
    Cho SH; Hoang Q; Phee JW; Kim YY; Shin HY; Shin JS
    Mol Cells; 2007 Feb; 23(1):100-7. PubMed ID: 17464218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation.
    Wolf L; Rizzini L; Stracke R; Ulm R; Rensing SA
    Plant Physiol; 2010 Jul; 153(3):1123-34. PubMed ID: 20427465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control.
    Landberg K; Šimura J; Ljung K; Sundberg E; Thelander M
    New Phytol; 2021 Jan; 229(2):845-860. PubMed ID: 32901452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water transport by aquaporins in the extant plant Physcomitrella patens.
    Liénard D; Durambur G; Kiefer-Meyer MC; Nogué F; Menu-Bouaouiche L; Charlot F; Gomord V; Lassalles JP
    Plant Physiol; 2008 Mar; 146(3):1207-18. PubMed ID: 18184735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens.
    Cho SH; Chung YS; Cho SK; Rim YW; Shin JS
    Mol Cells; 1999 Feb; 9(1):14-9. PubMed ID: 10102565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness.
    Stark LR; Brinda JC
    Ann Bot; 2015 Mar; 115(4):593-603. PubMed ID: 25578378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin-related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in Physcomitrella patens.
    Harries PA; Pan A; Quatrano RS
    Plant Cell; 2005 Aug; 17(8):2327-39. PubMed ID: 16006580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction to: Auxin/cytokinin antagonism in shoot development: from moss to seed plants.
    J Exp Bot; 2024 Mar; 75(7):2191. PubMed ID: 38309711
    [No Abstract]   [Full Text] [Related]  

  • 14. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens.
    Sakakibara K; Reisewitz P; Aoyama T; Friedrich T; Ando S; Sato Y; Tamada Y; Nishiyama T; Hiwatashi Y; Kurata T; Ishikawa M; Deguchi H; Rensing SA; Werr W; Murata T; Hasebe M; Laux T
    Development; 2014 Apr; 141(8):1660-70. PubMed ID: 24715456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of DEFECTIVE KERNEL1 loop function in three-dimensional body patterning in Physcomitrella patens.
    Demko V; Perroud PF; Johansen W; Delwiche CF; Cooper ED; Remme P; Ako AE; Kugler KG; Mayer KF; Quatrano R; Olsen OA
    Plant Physiol; 2014 Oct; 166(2):903-19. PubMed ID: 25185121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional auxin transport mechanisms in early diverging land plants.
    Viaene T; Landberg K; Thelander M; Medvecka E; Pederson E; Feraru E; Cooper ED; Karimi M; Delwiche CF; Ljung K; Geisler M; Sundberg E; Friml J
    Curr Biol; 2014 Dec; 24(23):2786-91. PubMed ID: 25448004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxin-mediated developmental control in the moss Physcomitrella patens.
    Thelander M; Landberg K; Sundberg E
    J Exp Bot; 2018 Jan; 69(2):277-290. PubMed ID: 28992074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants.
    Demko V; Ako E; Perroud PF; Quatrano R; Olsen OA
    Planta; 2016 Jul; 244(1):275-84. PubMed ID: 27100110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.