These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22833525)

  • 1. RedoxDB--a curated database for experimentally verified protein oxidative modification.
    Sun MA; Wang Y; Cheng H; Zhang Q; Ge W; Guo D
    Bioinformatics; 2012 Oct; 28(19):2551-2. PubMed ID: 22833525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
    Sun MA; Zhang Q; Wang Y; Ge W; Guo D
    BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of reversible disulfide based on features from local structural signatures.
    Sun MA; Wang Y; Zhang Q; Xia Y; Ge W; Guo D
    BMC Genomics; 2017 Apr; 18(1):279. PubMed ID: 28376774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dbGSH: a database of S-glutathionylation.
    Chen YJ; Lu CT; Lee TY; Chen YJ
    Bioinformatics; 2014 Aug; 30(16):2386-8. PubMed ID: 24790154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for predicting protein S-glutathionylation.
    Anashkina AA; Poluektov YM; Dmitriev VA; Kuznetsov EN; Mitkevich VA; Makarov AA; Petrushanko IY
    BMC Bioinformatics; 2020 Sep; 21(Suppl 11):282. PubMed ID: 32921310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.
    Vogelsang L; Eirich J; Finkemeier I; Dietz KJ
    Methods Mol Biol; 2024; 2832():99-113. PubMed ID: 38869790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of reversibly oxidized protein cysteine thiols using protein structure properties.
    Sanchez R; Riddle M; Woo J; Momand J
    Protein Sci; 2008 Mar; 17(3):473-81. PubMed ID: 18287280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iCysMod: an integrative database for protein cysteine modifications in eukaryotes.
    Wang P; Zhang Q; Li S; Cheng B; Xue H; Wei Z; Shao T; Liu ZX; Cheng H; Wang Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33406221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.
    Gallogly MM; Mieyal JJ
    Curr Opin Pharmacol; 2007 Aug; 7(4):381-91. PubMed ID: 17662654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox signalling via the cellular thiolstat.
    Jacob C
    Biochem Soc Trans; 2011 Oct; 39(5):1247-53. PubMed ID: 21936797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. dbSNO: a database of cysteine S-nitrosylation.
    Lee TY; Chen YJ; Lu CT; Ching WC; Teng YC; Huang HD; Chen YJ
    Bioinformatics; 2012 Sep; 28(17):2293-5. PubMed ID: 22782549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins.
    Diella F; Cameron S; Gemünd C; Linding R; Via A; Kuster B; Sicheritz-Pontén T; Blom N; Gibson TJ
    BMC Bioinformatics; 2004 Jun; 5():79. PubMed ID: 15212693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation, reactivity, and detection of protein sulfenic acids.
    Kettenhofen NJ; Wood MJ
    Chem Res Toxicol; 2010 Nov; 23(11):1633-46. PubMed ID: 20845928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics approaches to study the redox state of cysteine-containing proteins.
    Camerini S; Polci ML; Bachi A
    Ann Ist Super Sanita; 2005; 41(4):451-7. PubMed ID: 16569913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.