These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22833797)

  • 1. Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging.
    McMurtrie RE; Iversen CM; Dewar RC; Medlyn BE; Näsholm T; Pepper DA; Norby RJ
    Ecol Evol; 2012 Jun; 2(6):1235-50. PubMed ID: 22833797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest.
    Norby RJ; Iversen CM
    Ecology; 2006 Jan; 87(1):5-14. PubMed ID: 16634292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digging deeper: fine-root responses to rising atmospheric CO concentration in forested ecosystems.
    Iversen CM
    New Phytol; 2010 Apr; 186(2):346-57. PubMed ID: 20015070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global analysis of root distributions for terrestrial biomes.
    Jackson RB; Canadell J; Ehleringer JR; Mooney HA; Sala OE; Schulze ED
    Oecologia; 1996 Nov; 108(3):389-411. PubMed ID: 28307854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable responses of the depth of tree nitrogen uptake to pruning and competition.
    Rowe EC; Van Noordwijk M; Suprayogo D; Cadisch G
    Tree Physiol; 2006 Dec; 26(12):1529-35. PubMed ID: 17169892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2.
    Finzi AC; Norby RJ; Calfapietra C; Gallet-Budynek A; Gielen B; Holmes WE; Hoosbeek MR; Iversen CM; Jackson RB; Kubiske ME; Ledford J; Liberloo M; Oren R; Polle A; Pritchard S; Zak DR; Schlesinger WH; Ceulemans R
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):14014-9. PubMed ID: 17709743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest.
    Iversen CM; Ledford J; Norby RJ
    New Phytol; 2008; 179(3):837-847. PubMed ID: 18537885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of root uptake of
    Ota M; Tanaka T
    J Environ Radioact; 2019 May; 201():5-18. PubMed ID: 30721755
    [No Abstract]   [Full Text] [Related]  

  • 9. New insights into carbon allocation by trees from the hypothesis that annual wood production is maximized.
    McMurtrie RE; Dewar RC
    New Phytol; 2013 Sep; 199(4):981-990. PubMed ID: 23734960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest.
    Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG
    Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air CO2 enrichment and soil N fertilization for 6 years.
    Pritchard SG; Taylor BN; Cooper ER; Beidler KV; Strand AE; McCormack ML; Zhang S
    Glob Chang Biol; 2014 Apr; 20(4):1313-26. PubMed ID: 24123532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest.
    Jackson RB; Cook CW; Pippen JS; Palmer SM
    Ecology; 2009 Dec; 90(12):3352-66. PubMed ID: 20120805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small differences in root distributions allow resource niche partitioning.
    Kulmatiski A; Beard KH; Holdrege MC; February EC
    Ecol Evol; 2020 Sep; 10(18):9776-9787. PubMed ID: 33005344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in root architecture under elevated concentrations of CO₂ and nitrogen reflect alternate soil exploration strategies.
    Beidler KV; Taylor BN; Strand AE; Cooper ER; Schönholz M; Pritchard SG
    New Phytol; 2015 Feb; 205(3):1153-1163. PubMed ID: 25348775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity in nitrogen uptake among plant species with contrasting nutrient acquisition strategies in a tropical forest.
    Andersen KM; Mayor JR; Turner BL
    Ecology; 2017 May; 98(5):1388-1398. PubMed ID: 28263365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence.
    Mazzacavallo MG; Kulmatiski A
    PLoS One; 2015; 10(12):e0144300. PubMed ID: 26633177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Belowground fate of (15)N injected into sweetgum trees (Liquidambar styraciflua) at the ORNL FACE Experiment.
    Garten CT; Brice DJ
    Rapid Commun Mass Spectrom; 2009 Oct; 23(19):3094-100. PubMed ID: 19705377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Heterogeneous Karst Microhabitats on the Root Foraging Ability of Chinese Windmill Palm (
    Liu Y; Wei X; Zhou Z; Shao C; Su S
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31936453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species.
    Keuper F; Dorrepaal E; van Bodegom PM; van Logtestijn R; Venhuizen G; van Hal J; Aerts R
    Glob Chang Biol; 2017 Oct; 23(10):4257-4266. PubMed ID: 28675586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nitrogen budget of a pine forest under free air CO
    Finzi AC; DeLucia EH; Hamilton JG; Richter DD; Schlesinger WH
    Oecologia; 2002 Aug; 132(4):567-578. PubMed ID: 28547643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.