BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22833951)

  • 1. Design of submicron and nanoparticle delivery systems using supercritical carbon dioxide-mediated processes: an overview.
    Zarena AS; Sankar KU
    Ther Deliv; 2011 Feb; 2(2):259-77. PubMed ID: 22833951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions.
    Ajiboye AL; Trivedi V; Mitchell JC
    Drug Deliv Transl Res; 2018 Dec; 8(6):1790-1796. PubMed ID: 28828703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical fluid technology: concepts and pharmaceutical applications.
    Deshpande PB; Kumar GA; Kumar AR; Shavi GV; Karthik A; Reddy MS; Udupa N
    PDA J Pharm Sci Technol; 2011; 65(3):333-44. PubMed ID: 22293238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation.
    Moribe K; Tozuka Y; Yamamoto K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):328-38. PubMed ID: 18006109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring Particle Microstructures via Supercritical CO₂ Processes for Particular Drug Delivery.
    Liu G; Jiang Y; Wang X
    Curr Pharm Des; 2015; 21(19):2543-62. PubMed ID: 25876917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Pharmaceutical applications of supercritical carbon dioxide].
    Delattre L
    Ann Pharm Fr; 2007 Jan; 65(1):58-67. PubMed ID: 17299352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mini-review: green sustainable processes using supercritical fluid carbon dioxide.
    Ramsey E; Sun Q; Zhang Z; Zhang C; Gou W
    J Environ Sci (China); 2009; 21(6):720-6. PubMed ID: 19803072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
    Mishima K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):411-32. PubMed ID: 18061302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T; Takeuchi H; Kawashima Y
    Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle formation of organic compounds with retained biological activity.
    Jacobson GB; Shinde R; McCullough RL; Cheng NJ; Creasman A; Beyene A; Hickerson RP; Quan C; Turner C; Kaspar RL; Contag CH; Zare RN
    J Pharm Sci; 2010 Jun; 99(6):2750-5. PubMed ID: 20039390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.
    Pasquali I; Bettini R; Giordano F
    Adv Drug Deliv Rev; 2008 Feb; 60(3):399-410. PubMed ID: 17964684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process.
    Tsai WC; Rizvi SSH
    Food Res Int; 2017 Sep; 99(Pt 1):256-262. PubMed ID: 28784482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide-mediated process.
    Kadimi US; Balasubramanian DR; Ganni UR; Balaraman M; Govindarajulu V
    Nanomedicine; 2007 Dec; 3(4):273-80. PubMed ID: 17962084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions.
    Shekunov BY; Chattopadhyay P; Seitzinger J; Huff R
    Pharm Res; 2006 Jan; 23(1):196-204. PubMed ID: 16307386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.
    Salmaso S; Elvassore N; Bertucco A; Caliceti P
    J Pharm Sci; 2009 Feb; 98(2):640-50. PubMed ID: 18484622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug encapsulation using supercritical fluid extraction of emulsions.
    Chattopadhyay P; Huff R; Shekunov BY
    J Pharm Sci; 2006 Mar; 95(3):667-79. PubMed ID: 16447174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading.
    Tsai WC; Rizvi SSH
    Food Res Int; 2017 Jun; 96():94-102. PubMed ID: 28528112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system.
    Chattopadhyay P; Shekunov BY; Yim D; Cipolla D; Boyd B; Farr S
    Adv Drug Deliv Rev; 2007 Jul; 59(6):444-53. PubMed ID: 17582648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.