These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22833981)

  • 1. Supercritical fluid-mediated methods to encapsulate drugs: recent advances and new opportunities.
    Naylor A; Lewis AL; Ilium L
    Ther Deliv; 2011 Dec; 2(12):1551-65. PubMed ID: 22833981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T; Takeuchi H; Kawashima Y
    Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions.
    Djuris J; Milovanovic S; Medarevic D; Dobricic V; Dapčević A; Ibric S
    Int J Pharm; 2019 Jan; 554():190-200. PubMed ID: 30414899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical fluid technology: a promising approach in pharmaceutical research.
    Girotra P; Singh SK; Nagpal K
    Pharm Dev Technol; 2013 Feb; 18(1):22-38. PubMed ID: 23036159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique.
    Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C
    Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation.
    Moribe K; Tozuka Y; Yamamoto K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):328-38. PubMed ID: 18006109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are pharmaceutics really going supercritical?
    Pasquali I; Bettini R
    Int J Pharm; 2008 Dec; 364(2):176-87. PubMed ID: 18597957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification.
    Lemasson E; Bertin S; West C
    J Sep Sci; 2016 Jan; 39(1):212-33. PubMed ID: 26643850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
    Abuzar SM; Hyun SM; Kim JH; Park HJ; Kim MS; Park JS; Hwang SJ
    Int J Pharm; 2018 Mar; 538(1-2):1-13. PubMed ID: 29278733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes. Part II: Preparation of composite particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):11-6. PubMed ID: 15607253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Solubility Enhancement Study of Cefixime Trihydrate Using Different Dispersion Techniques.
    Obaidat RM; Khanfar M; Ghanma R
    AAPS PharmSciTech; 2019 May; 20(5):194. PubMed ID: 31119496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions.
    Obaidat RM; Tashtoush BM; Awad AA; Al Bustami RT
    AAPS PharmSciTech; 2017 Feb; 18(2):481-493. PubMed ID: 27116202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption onto Mesoporous Silica Using Supercritical Fluid Technology Improves Dissolution Rate of Carbamazepine-a Poorly Soluble Compound.
    Gandhi AV; Thipsay P; Kirthivasan B; Squillante E
    AAPS PharmSciTech; 2017 Nov; 18(8):3140-3150. PubMed ID: 28534299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmaceutical Amorphous Nanoparticles.
    Jog R; Burgess DJ
    J Pharm Sci; 2017 Jan; 106(1):39-65. PubMed ID: 27816266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel supercritical carbon dioxide impregnation technique for the production of amorphous solid drug dispersions: a comparison to hot melt extrusion.
    Potter C; Tian Y; Walker G; McCoy C; Hornsby P; Donnelly C; Jones DS; Andrews GP
    Mol Pharm; 2015 May; 12(5):1377-90. PubMed ID: 25730138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical fluid processing of drug nanoparticles in stable suspension.
    Pathak P; Meziani MJ; Desai T; Foster C; Diaz JA; Sun YP
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2542-5. PubMed ID: 17663280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.