These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22834380)

  • 1. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing.
    Altieri AH; Bertness MD; Coverdale TC; Herrmann NC; Angelini C
    Ecology; 2012 Jun; 93(6):1402-10. PubMed ID: 22834380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional ontogeny of New England salt marsh die-off.
    Coverdale TC; Bertness MD; Altieri AH
    Conserv Biol; 2013 Oct; 27(5):1041-8. PubMed ID: 23566036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of crab herbivory in die-off of New England salt marshes.
    Holdredge C; Bertness MD; Altieri AH
    Conserv Biol; 2009 Jun; 23(3):672-9. PubMed ID: 19183205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental predator removal causes rapid salt marsh die-off.
    Bertness MD; Brisson CP; Coverdale TC; Bevil MC; Crotty SM; Suglia ER
    Ecol Lett; 2014 Jul; 17(7):830-5. PubMed ID: 24766277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consumer control of salt marshes driven by human disturbance.
    Bertness MD; Silliman BR
    Conserv Biol; 2008 Jun; 22(3):618-23. PubMed ID: 18577090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod.
    Bertness MD; Coverdale TC
    Ecology; 2013 Sep; 94(9):1937-43. PubMed ID: 24279265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and indirect trophic effects of predator depletion on basal trophic levels.
    Chen H; Hagerty S; Crotty SM; Bertness MD
    Ecology; 2016 Feb; 97(2):338-46. PubMed ID: 27145609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedbacks underlie the resilience of salt marshes and rapid reversal of consumer-driven die-off.
    Altieri AH; Bertness MD; Coverdale TC; Axelman EE; Herrmann NC; Szathmary PL
    Ecology; 2013 Jul; 94(7):1647-57. PubMed ID: 23951724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herbivory drives the spread of salt marsh die-off.
    Bertness MD; Brisson CP; Bevil MC; Crotty SM
    PLoS One; 2014; 9(3):e92916. PubMed ID: 24651837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Belowground herbivory increases vulnerability of New England salt marshes to die-off.
    Coverdale TC; Altieri AH; Bertness MD
    Ecology; 2012 Sep; 93(9):2085-94. PubMed ID: 23094380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A trophic cascade regulates salt marsh primary production.
    Silliman BR; Bertness MD
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10500-5. PubMed ID: 12149475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A natural history model of New England salt marsh die-off.
    Pettengill TM; Crotty SM; Angelini C; Bertness MD
    Oecologia; 2018 Mar; 186(3):621-632. PubMed ID: 29357031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England.
    Bertness MD; Holdredge C; Altieri AH
    Ecology; 2009 Aug; 90(8):2108-17. PubMed ID: 19739373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought, snails, and large-scale die-off of southern U.S. salt marshes.
    Silliman BR; van de Koppel J; Bertness MD; Stanton LE; Mendelssohn IA
    Science; 2005 Dec; 310(5755):1803-6. PubMed ID: 16357258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latitudinal variation in top-down and bottom-up control of a salt marsh food web.
    Marczak LB; Ho CK; Wieski K; Vu H; Denno RF; Pennings SC
    Ecology; 2011 Feb; 92(2):276-81. PubMed ID: 21618906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience.
    Angelini C; van Montfrans SG; Hensel MJS; He Q; Silliman BR
    Oecologia; 2018 May; 187(1):205-217. PubMed ID: 29557538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-predator recovery abates geomorphic decline of a coastal ecosystem.
    Hughes BB; Beheshti KM; Tinker MT; Angelini C; Endris C; Murai L; Anderson SC; Espinosa S; Staedler M; Tomoleoni JA; Sanchez M; Silliman BR
    Nature; 2024 Feb; 626(7997):111-118. PubMed ID: 38297171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fishing through marine food webs.
    Essington TE; Beaudreau AH; Wiedenmann J
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3171-5. PubMed ID: 16481614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture of collapse: regime shift and recovery in an hierarchically structured marine ecosystem.
    Daskalov GM; Boicenco L; Grishin AN; Lazar L; Mihneva V; Shlyakhov VA; Zengin M
    Glob Chang Biol; 2017 Apr; 23(4):1486-1498. PubMed ID: 27643946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades.
    Finke DL; Denno RF
    Oecologia; 2006 Aug; 149(2):265-75. PubMed ID: 16708227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.