These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22834751)

  • 21. An empirical study of the evolution of virulence under both horizontal and vertical transmission.
    Stewart AD; Logsdon JM; Kelley SE
    Evolution; 2005 Apr; 59(4):730-9. PubMed ID: 15926685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional repression of specific host genes by the mycovirus Cryphonectria hypovirus 1.
    Kazmierczak P; Pfeiffer P; Zhang L; Van Alfen NK
    J Virol; 1996 Feb; 70(2):1137-42. PubMed ID: 8551574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parasitism and maintenance of diversity in a fungal vegetative incompatibility system: the role of selection by deleterious cytoplasmic elements.
    Brusini J; Robin C; Franc A
    Ecol Lett; 2011 May; 14(5):444-52. PubMed ID: 21382145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryphonectria hypovirus 3, a virus species in the family hypoviridae with a single open reading frame.
    Smart CD; Yuan W; Foglia R; Nuss DL; Fulbright DW; Hillman BI
    Virology; 1999 Dec; 265(1):66-73. PubMed ID: 10603318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transfection of Diaporthe perjuncta with Diaporthe RNA virus.
    Moleleki N; van Heerden SW; Wingfield MJ; Wingfield BD; Preisig O
    Appl Environ Microbiol; 2003 Jul; 69(7):3952-6. PubMed ID: 12839766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity of viruses in Cryphonectria parasitica and C. nitschkei in Japan and China, and partial characterization of a new chrysovirus species.
    Liu YC; Dynek JN; Hillman BI; Milgroom MG
    Mycol Res; 2007 Apr; 111(Pt 4):433-42. PubMed ID: 17509846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extending chestnut blight hypovirus host range within diaporthales by biolistic delivery of viral cDNA.
    Sasaki A; Onoue M; Kanematsu S; Suzaki K; Miyanishi M; Suzuki N; Nuss DL; Yoshida K
    Mol Plant Microbe Interact; 2002 Aug; 15(8):780-9. PubMed ID: 12182335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Major impacts on the primary metabolism of the plant pathogen Cryphonectria parasitica by the virulence-attenuating virus CHV1-EP713.
    Dawe AL; Van Voorhies WA; Lau TA; Ulanov AV; Li Z
    Microbiology (Reading); 2009 Dec; 155(Pt 12):3913-3921. PubMed ID: 19589830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A tannic acid-inducible and hypoviral-regulated Laccase3 contributes to the virulence of the chestnut blight fungus Cryphonectria parasitica.
    Chung HJ; Kwon BR; Kim JM; Park SM; Park JK; Cha BJ; Yang MS; Kim DH
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1582-90. PubMed ID: 18986254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles.
    Kanematsu S; Sasaki A; Onoue M; Oikawa Y; Ito T
    Phytopathology; 2010 Sep; 100(9):922-30. PubMed ID: 20701490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do persistent RNA viruses fit the trade-off hypothesis of virulence evolution?
    Márquez LM; Roossinck MJ
    Curr Opin Virol; 2012 Oct; 2(5):556-60. PubMed ID: 22819020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silencing of Kex2 significantly diminishes the virulence of Cryphonectria parasitica.
    Jacob-Wilk D; Turina M; Kazmierczak P; Van Alfen NK
    Mol Plant Microbe Interact; 2009 Feb; 22(2):211-21. PubMed ID: 19132873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal changes in pathogen diversity in a perennial plant-pathogen-hyperparasite system.
    Stauber L; Croll D; Prospero S
    Mol Ecol; 2022 Apr; 31(7):2073-2088. PubMed ID: 35122694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypovirulence: mycoviruses at the fungal-plant interface.
    Nuss DL
    Nat Rev Microbiol; 2005 Aug; 3(8):632-42. PubMed ID: 16064055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recombination and migration of Cryphonectria hypovirus 1 as inferred from gene genealogies and the coalescent.
    Carbone I; Liu YC; Hillman BI; Milgroom MG
    Genetics; 2004 Apr; 166(4):1611-29. PubMed ID: 15126384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The impact of parasitism on resource allocation in a fungal host: the case of
    Brusini J; Wayne ML; Franc A; Robin C
    Ecol Evol; 2017 Aug; 7(15):5967-5976. PubMed ID: 28808558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic diversity, virulence and fitness evolution in an obligate fungal parasite of bees.
    Evison SE; Foley K; Jensen AB; Hughes WO
    J Evol Biol; 2015 Jan; 28(1):179-88. PubMed ID: 25407685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence.
    Kasahara S; Nuss DL
    Mol Plant Microbe Interact; 1997 Nov; 10(8):984-93. PubMed ID: 9353946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The evolution of virulence in RNA viruses under a competition-colonization trade-off.
    Delgado-Eckert E; Ojosnegros S; Beerenwinkel N
    Bull Math Biol; 2011 Aug; 73(8):1881-908. PubMed ID: 21082274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lac1 expression.
    Chung HJ; Kim MJ; Lim JY; Park SM; Cha BJ; Kim YH; Yang MS; Kim DH
    Fungal Genet Biol; 2006 May; 43(5):326-36. PubMed ID: 16540355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.