These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 22834810)
1. Experimental study of the effects of DNAPL distribution on mass rebound. Wilking BT; Rodriguez DR; Illangasekare TH Ground Water; 2013 Mar; 51(2):229-36. PubMed ID: 22834810 [TBL] [Abstract][Full Text] [Related]
2. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone. Rivett MO; Dearden RA; Wealthall GP J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120 [TBL] [Abstract][Full Text] [Related]
3. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740 [TBL] [Abstract][Full Text] [Related]
4. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones. Yang L; Wang X; Mendoza-Sanchez I; Abriola LM J Contam Hydrol; 2018 Apr; 211():1-14. PubMed ID: 29525038 [TBL] [Abstract][Full Text] [Related]
5. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones. Heiderscheidt JL; Siegrist RL; Illangasekare TH J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622 [TBL] [Abstract][Full Text] [Related]
6. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. Parker BL; Cherry JA; Chapman SW J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493 [TBL] [Abstract][Full Text] [Related]
7. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. Parker BL; Chapman SW; Guilbeault MA J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583 [TBL] [Abstract][Full Text] [Related]
8. The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of a reactive brominated-solvent DNAPL. Johnston CD; Davis GB; Bastow TP; Annable MD; Trefry MG; Furness A; Geste Y; Woodbury RJ; Rao PS; Rhodes S J Contam Hydrol; 2013 Jan; 144(1):122-37. PubMed ID: 23247401 [TBL] [Abstract][Full Text] [Related]
9. Two-dimensional DNAPL migration affected by groundwater flow in unconfined aquifer. Kamon M; Endo K; Kawabata J; Inui T; Katsumi T J Hazard Mater; 2004 Jul; 110(1-3):1-12. PubMed ID: 15177722 [TBL] [Abstract][Full Text] [Related]
10. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling. Goode DJ; Imbrigiotta TE; Lacombe PJ J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882 [TBL] [Abstract][Full Text] [Related]
11. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation. Page JW; Soga K; Illangasekare T J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832 [TBL] [Abstract][Full Text] [Related]
12. Assessing the impacts of partial mass depletion in DNAPL source zones I. Analytical modeling of source strength functions and plume response. Falta RW; Suresh Rao P; Basu N J Contam Hydrol; 2005 Aug; 78(4):259-80. PubMed ID: 16019108 [TBL] [Abstract][Full Text] [Related]
13. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field. Hwang YK; Endres AL; Piggott SD; Parker BL J Contam Hydrol; 2008 Apr; 97(1-2):1-12. PubMed ID: 18258330 [TBL] [Abstract][Full Text] [Related]
14. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation. Rivett MO; Allen-King RM J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944 [TBL] [Abstract][Full Text] [Related]
15. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687 [TBL] [Abstract][Full Text] [Related]
16. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media. Yoon H; Valocchi AJ; Werth CJ J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872 [TBL] [Abstract][Full Text] [Related]
17. Assessing impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution. Falta RW; Basu N; Rao PS J Contam Hydrol; 2005 Sep; 79(1-2):45-66. PubMed ID: 16061307 [TBL] [Abstract][Full Text] [Related]
18. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model. Broholm K; Feenstra S; Cherry JA Environ Sci Technol; 2005 Jan; 39(1):317-24. PubMed ID: 15667112 [TBL] [Abstract][Full Text] [Related]
19. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496 [TBL] [Abstract][Full Text] [Related]
20. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. Maji R; Sudicky EA J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]