These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22834895)

  • 1. Recapitulating aspects of the oxygen and substrate environment of the damaged joint milieu for stem cell-based cartilage tissue engineering.
    O'hEireamhoin S; Buckley CT; Jones E; McGonagle D; Mulhall KJ; Kelly DJ
    Tissue Eng Part C Methods; 2013 Feb; 19(2):117-27. PubMed ID: 22834895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs.
    Buckley CT; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Jul; 11():102-11. PubMed ID: 22658159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel.
    Zscharnack M; Poesel C; Galle J; Bader A
    Cells Tissues Organs; 2009; 190(2):81-93. PubMed ID: 19033681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of environmental factors in regulating the development of cartilaginous grafts engineered using osteoarthritic human infrapatellar fat pad-derived stem cells.
    Liu Y; Buckley CT; Downey R; Mulhall KJ; Kelly DJ
    Tissue Eng Part A; 2012 Aug; 18(15-16):1531-41. PubMed ID: 22443147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A growth factor delivery system for chondrogenic induction of infrapatellar fat pad-derived stem cells in fibrin hydrogels.
    Ahearne M; Buckley CT; Kelly DJ
    Biotechnol Appl Biochem; 2011; 58(5):345-52. PubMed ID: 21995537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells.
    Pei M; He F; Li J; Tidwell JE; Jones AC; McDonough EB
    Tissue Eng Part A; 2013 May; 19(9-10):1144-54. PubMed ID: 23216161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes.
    Buckley CT; Vinardell T; Kelly DJ
    Osteoarthritis Cartilage; 2010 Oct; 18(10):1345-54. PubMed ID: 20650328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions.
    Liu Y; Buckley CT; Almeida HV; Mulhall KJ; Kelly DJ
    Tissue Eng Part A; 2014 Nov; 20(21-22):3050-62. PubMed ID: 24785365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering.
    Li J; Pei M
    Tissue Eng Part A; 2011 Mar; 17(5-6):703-12. PubMed ID: 20929284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation.
    Thorpe SD; Buckley CT; Vinardell T; O'Brien FJ; Campbell VA; Kelly DJ
    Ann Biomed Eng; 2010 Sep; 38(9):2896-909. PubMed ID: 20458627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells.
    Sheehy EJ; Buckley CT; Kelly DJ
    Biochem Biophys Res Commun; 2012 Jan; 417(1):305-10. PubMed ID: 22155244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.
    Luo L; Thorpe SD; Buckley CT; Kelly DJ
    Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells.
    Mesallati T; Buckley CT; Kelly DJ
    J Tissue Eng Regen Med; 2017 May; 11(5):1343-1353. PubMed ID: 26010516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering articular cartilage-like grafts by self-assembly of infrapatellar fat pad-derived stem cells.
    Mesallati T; Buckley CT; Kelly DJ
    Biotechnol Bioeng; 2014 Aug; 111(8):1686-98. PubMed ID: 25097913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels.
    Luo L; O'Reilly AR; Thorpe SD; Buckley CT; Kelly DJ
    J Tissue Eng Regen Med; 2017 Sep; 11(9):2613-2628. PubMed ID: 27138274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels.
    Park KH; Na K
    J Biosci Bioeng; 2008 Jul; 106(1):74-9. PubMed ID: 18691535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells.
    Buckley CT; Vinardell T; Thorpe SD; Haugh MG; Jones E; McGonagle D; Kelly DJ
    J Biomech; 2010 Mar; 43(5):920-6. PubMed ID: 20005518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells.
    Buckley CT; Meyer EG; Kelly DJ
    Tissue Eng Part A; 2012 Feb; 18(3-4):382-96. PubMed ID: 21919793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells.
    Ho ST; Cool SM; Hui JH; Hutmacher DW
    Biomaterials; 2010 Jan; 31(1):38-47. PubMed ID: 19800683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.