These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 22835454)

  • 1. TGF-β/Smad signaling in kidney disease.
    Lan HY; Chung AC
    Semin Nephrol; 2012 May; 32(3):236-43. PubMed ID: 22835454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
    Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY
    Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the TGF-β/BMP-7/Smad pathways in renal diseases.
    Meng XM; Chung AC; Lan HY
    Clin Sci (Lond); 2013 Feb; 124(4):243-54. PubMed ID: 23126427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation.
    Lan HY
    Int J Biol Sci; 2011; 7(7):1056-67. PubMed ID: 21927575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro.
    Meng XM; Huang XR; Xiao J; Chen HY; Zhong X; Chung AC; Lan HY
    J Pathol; 2012 Jun; 227(2):175-88. PubMed ID: 22190171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta and Smad signalling in kidney diseases.
    Wang W; Koka V; Lan HY
    Nephrology (Carlton); 2005 Feb; 10(1):48-56. PubMed ID: 15705182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming growth factor-β/Smad signalling in diabetic nephropathy.
    Lan HY
    Clin Exp Pharmacol Physiol; 2012 Aug; 39(8):731-8. PubMed ID: 22211842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7.
    Wang W; Huang XR; Li AG; Liu F; Li JH; Truong LD; Wang XJ; Lan HY
    J Am Soc Nephrol; 2005 May; 16(5):1371-83. PubMed ID: 15788474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ureic clearance granule, alleviates renal dysfunction and tubulointerstitial fibrosis by promoting extracellular matrix degradation in renal failure rats, compared with enalapril.
    Huang YR; Wei QX; Wan YG; Sun W; Mao ZM; Chen HL; Meng XJ; Shi XM; Tu Y; Zhu Q
    J Ethnopharmacol; 2014 Sep; 155(3):1541-52. PubMed ID: 25087615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines.
    Chen CL; Chou KJ; Lee PT; Chen YS; Chang TY; Hsu CY; Huang WC; Chung HM; Fang HC
    Exp Cell Res; 2010 Apr; 316(7):1109-18. PubMed ID: 20202468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-β1-activated kinase-1 regulates inflammation and fibrosis in the obstructed kidney.
    Ma FY; Tesch GH; Ozols E; Xie M; Schneider MD; Nikolic-Paterson DJ
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1410-21. PubMed ID: 21367917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin E ameliorates renal fibrosis by inhibition of TGF-beta/Smad2/3 signaling pathway in UUO mice.
    Tasanarong A; Kongkham S; Duangchana S; Thitiarchakul S; Eiam-Ong S
    J Med Assoc Thai; 2011 Dec; 94 Suppl 7():S1-9. PubMed ID: 22619900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGF-beta 1/Smads signaling stimulates renal interstitial fibrosis in experimental AAN.
    Li J; Zhang Z; Wang D; Wang Y; Li Y; Wu G
    J Recept Signal Transduct Res; 2009; 29(5):280-5. PubMed ID: 19640259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Smad signaling in kidney disease.
    Zhang Y; Wang S; Liu S; Li C; Wang J
    Int Urol Nephrol; 2015 Dec; 47(12):1965-75. PubMed ID: 26433882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmented cytoplasmic Smad4 induces acceleration of TGF-beta1 signaling in renal tubulointerstitial cells of hereditary nephrotic ICGN mice with chronic renal fibrosis; possible role for myofibroblastic differentiation.
    Goto Y; Manabe N; Uchio-Yamada K; Yamaguchi-Yamada M; Inoue N; Yamamoto Y; Ogura A; Nagano N; Miyamoto H
    Cell Tissue Res; 2004 Feb; 315(2):209-21. PubMed ID: 14615933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of p38 mitogen-activated protein kinase and TGF-beta1/Smad signaling pathways rescues bone marrow-derived peritubular capillary endothelial cells in adriamycin-induced nephrosis.
    Li J; Deane JA; Campanale NV; Bertram JF; Ricardo SD
    J Am Soc Nephrol; 2006 Oct; 17(10):2799-811. PubMed ID: 16959826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations?
    Muñoz-Félix JM; González-Núñez M; Martínez-Salgado C; López-Novoa JM
    Pharmacol Ther; 2015 Dec; 156():44-58. PubMed ID: 26493350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smads as therapeutic targets for chronic kidney disease.
    Lan HY
    Kidney Res Clin Pract; 2012 Mar; 31(1):4-11. PubMed ID: 26889404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-dose of multi-glycoside of Tripterygium wilfordii Hook. f., a natural regulator of TGF-β1/Smad signaling activity improves adriamycin-induced glomerulosclerosis in vivo.
    Wan YG; Che XY; Sun W; Huang YR; Meng XJ; Chen HL; Shi XM; Tu Y; Wu W; Liu YL
    J Ethnopharmacol; 2014 Feb; 151(3):1079-1089. PubMed ID: 24362077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of transforming growth factor beta(1)/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts.
    He S; Liu X; Yang Y; Huang W; Xu S; Yang S; Zhang X; Roberts MS
    Br J Dermatol; 2010 Mar; 162(3):538-46. PubMed ID: 19772524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.