These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22835663)

  • 21. Slow force response and auto-regulation of contractility in heterogeneous myocardium.
    Markhasin VS; Balakin AA; Katsnelson LB; Konovalov P; Lookin ON; Protsenko Y; Solovyova O
    Prog Biophys Mol Biol; 2012; 110(2-3):305-18. PubMed ID: 22929956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electromechanical wavebreak in a model of the human left ventricle.
    Keldermann RH; Nash MP; Gelderblom H; Wang VY; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H134-43. PubMed ID: 20400690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A ventricular pressure-clamping system for the study of mechano-electrical feedback.
    Wei H; Huang HX; Wang W; Zhang ZF; Fu XS; Liu P; Niu WZ
    Sheng Li Xue Bao; 2006 Dec; 58(6):606-10. PubMed ID: 17173197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart.
    Werdich AA; Brzezinski A; Jeyaraj D; Khaled Sabeh M; Ficker E; Wan X; McDermott BM; Macrae CA; Rosenbaum DS
    Prog Biophys Mol Biol; 2012; 110(2-3):154-65. PubMed ID: 22835662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
    Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronization of repolarization by mechano-electrical coupling in the porcine heart.
    Opthof T; Meijborg VM; Belterman CN; Coronel R
    Cardiovasc Res; 2015 Oct; 108(1):181-7. PubMed ID: 25935868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term cardiac memory in canine heart is associated with the evolution of a transmural repolarization gradient.
    Coronel R; Opthof T; Plotnikov AN; Wilms-Schopman FJ; Shlapakova IN; Danilo P; Sosunov EA; Anyukhovsky EP; Janse MJ; Rosen MR
    Cardiovasc Res; 2007 Jun; 74(3):416-25. PubMed ID: 17391659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of the mechanical response of cardiac alternans by using an electromechanical model of human ventricular myocytes.
    Park JI; Lim KM
    Biomed Eng Online; 2019 Jun; 18(1):72. PubMed ID: 31174533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models.
    Kohl P; Hunter P; Noble D
    Prog Biophys Mol Biol; 1999; 71(1):91-138. PubMed ID: 10070213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An electromechanical left ventricular wedge model to study the effects of deformation on repolarization during heart failure.
    Rocha BM; Toledo EM; Barra LP; dos Santos RW
    Biomed Res Int; 2015; 2015():465014. PubMed ID: 26550570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myocardial infarction does not preclude electrical and hemodynamic benefits of cardiac resynchronization therapy in dyssynchronous canine hearts.
    Rademakers LM; van Kerckhoven R; van Deursen CJ; Strik M; van Hunnik A; Kuiper M; Lampert A; Klersy C; Leyva F; Auricchio A; Maessen JG; Prinzen FW
    Circ Arrhythm Electrophysiol; 2010 Aug; 3(4):361-8. PubMed ID: 20495014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ventricular repolarization: an overview of (patho)physiology, sympathetic effects and genetic aspects.
    Conrath CE; Opthof T
    Prog Biophys Mol Biol; 2006 Nov; 92(3):269-307. PubMed ID: 16023179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Air pollution effects on ventricular repolarization.
    Lux RL; Pope CA
    Res Rep Health Eff Inst; 2009 May; (141):3-20; discussion 21-8. PubMed ID: 19579527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of ventricular and left atrial mechanical functions, atrial electromechanical delay and P wave dispersion in patients with scleroderma.
    Aktoz M; Yilmaztepe M; Tatli E; Turan FN; Umit EG; Altun A
    Cardiol J; 2011; 18(3):261-9. PubMed ID: 21660915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of mechanical deformation on pseudo-ECG: a simulation study.
    Favino M; Pozzi S; Pezzuto S; Prinzen FW; Auricchio A; Krause R
    Europace; 2016 Dec; 18(suppl 4):iv77-iv84. PubMed ID: 28011834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of cardiac alternans by mechanical and electrical feedback.
    Yapari F; Deshpande D; Belhamadia Y; Dubljevic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012706. PubMed ID: 25122334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered T wave dynamics in a contracting cardiac model.
    Smith NP; Buist ML; Pullan AJ
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S203-9. PubMed ID: 14760925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Simulation Study of the Role of Mechanical Stretch in Arrhythmogenesis during Cardiac Alternans.
    Hazim A; Belhamadia Y; Dubljevic S
    Biophys J; 2021 Jan; 120(1):109-121. PubMed ID: 33248131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrodynamic heart model construction and ECG simulation.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Methods Inf Med; 2006; 45(5):564-73. PubMed ID: 17019512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of cardiac alternans in an electromechanical model of cardiac tissue.
    Hazim A; Belhamadia Y; Dubljevic S
    Comput Biol Med; 2015 Aug; 63():108-17. PubMed ID: 26069933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.