BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22835768)

  • 1. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.
    Zhang FM; Liu BS; Zhang Y; Guo YH; Wan ZY; Subhan F
    J Hazard Mater; 2012 Sep; 233-234():219-27. PubMed ID: 22835768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.
    Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS
    J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization.
    Zhang Y; Liu BS; Zhang FM; Zhang ZF
    J Hazard Mater; 2013 Mar; 248-249():81-8. PubMed ID: 23337625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.
    Wang J; Qiu B; Han L; Feng G; Hu Y; Chang L; Bao W
    J Hazard Mater; 2012 Apr; 213-214():184-92. PubMed ID: 22341981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High H
    Xia H; Liu B
    J Hazard Mater; 2017 Feb; 324(Pt B):281-290. PubMed ID: 27810326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports.
    Ko TH; Chu H; Chaung LK
    Chemosphere; 2005 Jan; 58(4):467-74. PubMed ID: 15620738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of functional xLayMn/KIT-6 and features in hot coal gas desulphurization.
    Xia H; Zhang F; Zhang Z; Liu B
    Phys Chem Chem Phys; 2015 Aug; 17(32):20667-76. PubMed ID: 26204251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-deep adsorptive desulfurization of a model diesel fuel on regenerable Ni-Cu/γ-Al₂O₃ at low temperatures in absence of hydrogen.
    Mansouri A; Khodadadi AA; Mortazavi Y
    J Hazard Mater; 2014 Apr; 271():120-30. PubMed ID: 24632365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice substitution and desulfurization kinetic analysis of Zn-based spinel sorbents loading onto porous silicoaluminophosphate zeolites.
    Liu Q; Liu B; Liu Q; Xu R; Xia H
    J Hazard Mater; 2020 Feb; 383():121151. PubMed ID: 31678744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies.
    Dhage P; Samokhvalov A; Repala D; Duin EC; Tatarchuk BJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2179-87. PubMed ID: 21132188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution.
    Lei D; Zheng Q; Wang Y; Wang H
    J Environ Sci (China); 2015 Feb; 28():118-27. PubMed ID: 25662246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of ultra-low-sulfur gasoline: an equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents.
    Subhan F; Liu BS; Zhang QL; Wang WS
    J Hazard Mater; 2012 Nov; 239-240():370-80. PubMed ID: 23022413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.
    Ko TH; Chu H; Lin HP; Peng CY
    J Hazard Mater; 2006 Aug; 136(3):776-83. PubMed ID: 16469434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N2O decomposition by mesoporous silica supported Rh catalysts.
    Hussain M; Fino D; Russo N
    J Hazard Mater; 2012 Apr; 211-212():255-65. PubMed ID: 21907485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced capture of elemental mercury by bamboo-based sorbents.
    Tan Z; Xiang J; Su S; Zeng H; Zhou C; Sun L; Hu S; Qiu J
    J Hazard Mater; 2012 Nov; 239-240():160-6. PubMed ID: 22995206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ incorporation of nickel nanoparticles into the mesopores of MCM-41 by manipulation of solvent-solute interaction and its activity toward adsorptive desulfurization of gas oil.
    Samadi-Maybodi A; Teymouri M; Vahid A; Miranbeigi A
    J Hazard Mater; 2011 Sep; 192(3):1667-74. PubMed ID: 21820806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
    Li D; Han J; Han L; Wang J; Chang L
    J Environ Sci (China); 2014 Jul; 26(7):1497-504. PubMed ID: 25079999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.