These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22835770)

  • 1. Influence of impregnation method on metal retention of CCB-treated wood in slow pyrolysis process.
    Kinata SE; Loubar K; Bouslamti A; Belloncle C; Tazerout M
    J Hazard Mater; 2012 Sep; 233-234():172-6. PubMed ID: 22835770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of pyrolysis and hydroliquefaction of CCB-treated wood for energy recovery: optimization and products characterization.
    Kinata SE; Loubar K; Paraschiv M; Belloncle C; Tazerout M
    Bioresour Technol; 2012 Aug; 118():315-22. PubMed ID: 22705538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungicidal value of wood tar from pyrolysis of treated wood.
    Mazela B
    Waste Manag; 2007; 27(4):461-5. PubMed ID: 17011772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of slow pyrolysis of a particle of treated wood waste.
    Ratte J; Marias F; Vaxelaire J; Bernada P
    J Hazard Mater; 2009 Oct; 170(2-3):1023-40. PubMed ID: 19535204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of leaching medium and drying time between successive leaching periods on the emission of chromium, copper, and boron from treated wood.
    García-Valcárcel AI; Bravo I; Jiménez C; Tadeo JL
    Environ Toxicol Chem; 2004 Nov; 23(11):2682-8. PubMed ID: 15559284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses.
    Kim JY; Kim TS; Eom IY; Kang SM; Cho TS; Choi IG; Choi JW
    J Hazard Mater; 2012 Aug; 227-228():445-52. PubMed ID: 22698682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper and boron fixation in wood by pyrolytic resins.
    Mourant D; Yang DQ; Lu X; Riedl B; Roy C
    Bioresour Technol; 2009 Feb; 100(3):1442-9. PubMed ID: 18835155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal loss from treated wood products in contact with municipal solid waste landfill leachate.
    Dubey B; Townsend T; Solo-Gabriele H
    J Hazard Mater; 2010 Mar; 175(1-3):558-68. PubMed ID: 19910117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products.
    Hwang H; Oh S; Cho TS; Choi IG; Choi JW
    Bioresour Technol; 2013 Dec; 150():359-66. PubMed ID: 24185037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process.
    Coudert L; Blais JF; Mercier G; Cooper P; Gastonguay L; Morris P; Janin A; Reynier N
    J Hazard Mater; 2013 Oct; 261():277-85. PubMed ID: 23954815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Value-added performance of processed cardboard and farm breeding compost by pyrolysis.
    Ghorbel L; Rouissi T; Brar SK; López-González D; Ramirez AA; Godbout S
    Waste Manag; 2015 Apr; 38():164-73. PubMed ID: 25683201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.
    Chen D; Zhou J; Zhang Q
    Bioresour Technol; 2014 Oct; 169():313-319. PubMed ID: 25063973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea.
    Kim H; Kim DJ; Koo JH; Park JG; Jang YC
    Sci Total Environ; 2007 Mar; 374(2-3):273-81. PubMed ID: 17292945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi.
    Humar M; Amartey SA; Pohleven F
    Waste Manag; 2006; 26(5):459-65. PubMed ID: 15923114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant.
    Helsen L; Hacala A
    J Hazard Mater; 2006 Oct; 137(3):1438-52. PubMed ID: 16737775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of acidification of CCB (Cu/Cr/B) impregnated wood on fungal copper tolerance.
    Humar M; Sentjurc M; Amartey SA; Pohleven F
    Chemosphere; 2005 Feb; 58(6):743-9. PubMed ID: 15621187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two possible pathways for the release of arsenic during pyrolysis of chromated copper arsenate (CCA)-treated wood.
    Kakitani T; Hata T; Kajimoto T; Imamura Y
    J Hazard Mater; 2004 Sep; 113(1-3):247-52. PubMed ID: 15363538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and pyrolysis characteristics of lignin derived from wood powder hydrolysis residues.
    Zhang B; Yin X; Wu C; Qiu Z; Wang C; Huang Y; Ma L; Wu S
    Appl Biochem Biotechnol; 2012 Sep; 168(1):37-46. PubMed ID: 21603951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pyrolysis on solvent extractability of toxic metals from chromated copper arsenate (CCA)-treated wood.
    Kakitani T; Hata T; Kajimoto T; Imamura Y
    J Hazard Mater; 2004 Jun; 109(1-3):53-7. PubMed ID: 15177745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron impregnation treatment of Eucalyptus grandis wood.
    Dhamodaran TK; Gnanaharan R
    Bioresour Technol; 2007 Aug; 98(11):2240-2. PubMed ID: 17046244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.