BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 22835858)

  • 1. Protective effects of erythropoietin on cirrhotic cardiomyopathy in rats.
    Liu L; Liu H; Nam SW; Lee SS
    Dig Liver Dis; 2012 Dec; 44(12):1012-7. PubMed ID: 22835858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac muscarinic receptor function in rats with cirrhotic cardiomyopathy.
    Jaue DN; Ma Z; Lee SS
    Hepatology; 1997 Jun; 25(6):1361-5. PubMed ID: 9185753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats.
    Liu H; Ma Z; Lee SS
    Gastroenterology; 2000 May; 118(5):937-44. PubMed ID: 10784593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats.
    Gaskari SA; Liu H; Moezi L; Li Y; Baik SK; Lee SS
    Br J Pharmacol; 2005 Oct; 146(3):315-23. PubMed ID: 16025138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear factor-kappaB inhibition improves myocardial contractility in rats with cirrhotic cardiomyopathy.
    Liu H; Lee SS
    Liver Int; 2008 May; 28(5):640-8. PubMed ID: 18346133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy.
    Li L; Takemura G; Li Y; Miyata S; Esaki M; Okada H; Kanamori H; Khai NC; Maruyama R; Ogino A; Minatoguchi S; Fujiwara T; Fujiwara H
    Circulation; 2006 Jan; 113(4):535-43. PubMed ID: 16449733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cardiac myofilament proteins titin and collagen in the pathogenesis of diastolic dysfunction in cirrhotic rats.
    Glenn TK; Honar H; Liu H; ter Keurs HE; Lee SS
    J Hepatol; 2011 Dec; 55(6):1249-55. PubMed ID: 21703204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galectin-3 inhibits cardiac contractility via a tumor necrosis factor alpha-dependent mechanism in cirrhotic rats.
    Yoon KT; Liu H; Zhang J; Han S; Lee SS
    Clin Mol Hepatol; 2022 Apr; 28(2):232-241. PubMed ID: 34986297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective Effects of Spermidine Against Cirrhotic Cardiomyopathy in Bile Duct-Ligated Rats.
    Sheibani M; Nezamoleslami S; Mousavi SE; Faghir-Ghanesefat H; Yousefi-Manesh H; Rezayat SM; Dehpour A
    J Cardiovasc Pharmacol; 2020 Sep; 76(3):286-295. PubMed ID: 32902943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetylcysteine effects on genotoxic and oxidative stress parameters in cirrhotic rats with hepatopulmonary syndrome.
    Vercelino R; Tieppo J; Dias AS; Marroni CA; Garcia E; Meurer L; Picada JN; Marroni NP
    Basic Clin Pharmacol Toxicol; 2008 Apr; 102(4):370-6. PubMed ID: 18341514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of altered cardiac membrane fluidity on beta-adrenergic receptor signalling in rats with cirrhotic cardiomyopathy.
    Ma Z; Lee SS; Meddings JB
    J Hepatol; 1997 Apr; 26(4):904-12. PubMed ID: 9126806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of altered beta-adrenoceptor signal transduction in the pathogenesis of cirrhotic cardiomyopathy in rats.
    Ma Z; Miyamoto A; Lee SS
    Gastroenterology; 1996 Apr; 110(4):1191-8. PubMed ID: 8613009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of lipophilic bile acids in the development of cirrhotic cardiomyopathy.
    Zavecz JH; Battarbee HD
    Cardiovasc Toxicol; 2010 Jun; 10(2):117-29. PubMed ID: 20414815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor-alpha.
    Xu Y; Arenas IA; Armstrong SJ; Plahta WC; Xu H; Davidge ST
    Cardiovasc Res; 2006 Mar; 69(4):836-44. PubMed ID: 16403479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different tumor necrosis factor-alpha-associated leptin expression in rats with dimethylnitrosamine and bile duct ligation-induced liver cirrhosis.
    Lin SY; Chen WY; Chiu YT; Lee WJ; Wu HS; Sheu WH
    Metabolism; 2005 Apr; 54(4):445-52. PubMed ID: 15798949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy.
    Saeedi Saravi SS; Ghazi-Khansari M; Ejtemaei Mehr S; Nobakht M; Mousavi SE; Dehpour AR
    World J Gastroenterol; 2016 May; 22(19):4685-94. PubMed ID: 27217700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy.
    Li CJ; Zhang QM; Li MZ; Zhang JY; Yu P; Yu DM
    Chin Med J (Engl); 2009 Nov; 122(21):2580-6. PubMed ID: 19951573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of jaundice and cirrhosis on beta-adrenoceptor signaling in three rat models of cirrhotic cardiomyopathy.
    Ma Z; Zhang Y; Huet PM; Lee SS
    J Hepatol; 1999 Mar; 30(3):485-91. PubMed ID: 10190733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protective effect of peony extract on acute myocardial infarction in rats.
    Mo X; Zhao N; Du X; Bai L; Liu J
    Phytomedicine; 2011 Apr; 18(6):451-7. PubMed ID: 21112198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cirrhosis is associated with development of tolerance to cardiac chronotropic effect of endotoxin in rats.
    Jazaeri F; Tavangar SM; Ghazi-Khansari M; Khorramizadeh MR; Mani AR; Dehpour AR
    Liver Int; 2013 Mar; 33(3):368-74. PubMed ID: 23311391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.