BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22836080)

  • 1. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cell-free layer in microvascular blood flow.
    Kim S; Ong PK; Yalcin O; Intaglietta M; Johnson PC
    Biorheology; 2009; 46(3):181-9. PubMed ID: 19581726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear stress variation induced by red blood cell motion in microvessel.
    Xiong W; Zhang J
    Ann Biomed Eng; 2010 Aug; 38(8):2649-59. PubMed ID: 20352336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear stress in the microvasculature: influence of red blood cell morphology and endothelial wall undulation.
    Hogan B; Shen Z; Zhang H; Misbah C; Barakat AI
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1095-1109. PubMed ID: 30840162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell migration in microvessels.
    Mansour MH; Bressloff NW; Shearman CP
    Biorheology; 2010; 47(1):73-93. PubMed ID: 20448298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells.
    Secomb TW; Hsu R; Pries AR
    Biorheology; 2001; 38(2-3):143-50. PubMed ID: 11381171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall shear stress in backward-facing step flow of a red blood cell suspension.
    Gijsen FJ; van de Vosse FN; Janssen JD
    Biorheology; 1998; 35(4-5):263-79. PubMed ID: 10474654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte concentration distribution in sheathed microfluidic flows.
    Aucoin CP; Nanne EE; Leonard EF
    ASAIO J; 2009; 55(5):423-7. PubMed ID: 19584710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo.
    Koutsiaris AG; Tachmitzi SV; Batis N; Kotoula MG; Karabatsas CH; Tsironi E; Chatzoulis DZ
    Biorheology; 2007; 44(5-6):375-86. PubMed ID: 18401076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.