These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 2283679)
1. Inhibition of the phosphate self-exchange flux in human erythrocytes and erythrocyte ghosts. Stadler F; Schnell KF J Membr Biol; 1990 Oct; 118(1):19-47. PubMed ID: 2283679 [TBL] [Abstract][Full Text] [Related]
2. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. Schnell KF; Besl E; von der Mosel R J Membr Biol; 1981; 61(3):173-92. PubMed ID: 7277470 [TBL] [Abstract][Full Text] [Related]
3. Chloride mediated inhibition of the phosphate and the sulfate transport by dipyridamole in human erythrocyte ghosts. Renner M; Dietl M; Schnell KF FEBS Lett; 1988 Sep; 238(1):77-81. PubMed ID: 3169258 [TBL] [Abstract][Full Text] [Related]
4. Concentration dependence of the unidirectional sulfate and phosphate flux in human red cell ghosts under selfexchange and under homoexchange conditions. Schnell KF; Besl E Pflugers Arch; 1984 Oct; 402(2):197-206. PubMed ID: 6527939 [TBL] [Abstract][Full Text] [Related]
5. Asymmetry of the chloride transport system in human erythrocyte ghosts. Schnell KF; Besl E; Manz A Pflugers Arch; 1978 Jun; 375(1):87-95. PubMed ID: 567343 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein. Legrum B; Passow H Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878 [TBL] [Abstract][Full Text] [Related]
7. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3. King PA; Gunn RB Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210 [TBL] [Abstract][Full Text] [Related]
8. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. Wieth JO J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956 [TBL] [Abstract][Full Text] [Related]
9. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. Funder J; Wieth JO J Physiol; 1976 Nov; 262(3):679-98. PubMed ID: 13204 [TBL] [Abstract][Full Text] [Related]
10. Electron spin resonance studies on the inorganic-anion-transport system of the human red blood cell. Binding of a disulfonatostilbene spin label (NDS-TEMPO) and inhibition of anion transport. Schnell KF; Elbe W; Käsbauer J; Kaufmann E Biochim Biophys Acta; 1983 Jul; 732(1):266-75. PubMed ID: 6307363 [TBL] [Abstract][Full Text] [Related]
11. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Barzilay M; Cabantchik ZI Membr Biochem; 1979; 2(2):255-81. PubMed ID: 229385 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes. Janas T; Bjerrum PJ; Brahm J; Wieth JO Am J Physiol; 1989 Oct; 257(4 Pt 1):C601-6. PubMed ID: 2801916 [TBL] [Abstract][Full Text] [Related]
13. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. Schnell KF; Gerhardt S; Schöppe-Fredenburg A J Membr Biol; 1977 Jan; 30(4):319-50. PubMed ID: 14260 [No Abstract] [Full Text] [Related]
14. Characterization of the Band 3 substrate site in human red cell ghosts by NDS-TEMPO, a disulfonatostilbene spin probe: the function of protons in NDS-TEMPO and substrate-anion binding in relation to anion transport. Kaufmann E; Eberl G; Schnell KF J Membr Biol; 1986; 91(2):129-46. PubMed ID: 3018256 [TBL] [Abstract][Full Text] [Related]
15. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. Fröhlich O J Membr Biol; 1982; 65(1-2):111-23. PubMed ID: 7057455 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the action of an organophosphorus insecticide and its metabolite on chloride and sulfate transport in erythrocyte membrane. Blasiak J Z Naturforsch C J Biosci; 1996; 51(3-4):226-32. PubMed ID: 8639229 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane. Legrum B; Fasold H; Passow H Hoppe Seylers Z Physiol Chem; 1980 Oct; 361(10):1573-90. PubMed ID: 7450677 [TBL] [Abstract][Full Text] [Related]
18. Anion transport in red blood cells. III. Sites and sidedness of inhibition by high-affinity reversible binding probes. Barzilay M; Cabantchik ZI Membr Biochem; 1979; 2(3-4):297-322. PubMed ID: 514089 [TBL] [Abstract][Full Text] [Related]
19. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. Gunn RB; Fröhlich O J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826 [TBL] [Abstract][Full Text] [Related]
20. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Lepke S; Passow H Biochim Biophys Acta; 1976 Dec; 455(2):353-70. PubMed ID: 999920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]