These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 22837002)
81. Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation. Weber ME; Golledge NR; Fogwill CJ; Turney CSM; Thomas ZA Nat Commun; 2021 Nov; 12(1):6683. PubMed ID: 34795275 [TBL] [Abstract][Full Text] [Related]
82. Synchronous retreat of Thwaites and Pine Island glaciers in response to external forcings in the presatellite era. Clark RW; Wellner JS; Hillenbrand CD; Totten RL; Smith JA; Miller LE; Larter RD; Hogan KA; Graham AGC; Nitsche FO; Lehrmann AA; Lepp AP; Kirkham JD; Fitzgerald VT; Garcia-Barrera G; Ehrmann W; Wacker L Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2211711120. PubMed ID: 38408214 [TBL] [Abstract][Full Text] [Related]
84. Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model. Park JY; Schloesser F; Timmermann A; Choudhury D; Lee JY; Nellikkattil AB Nat Commun; 2023 Feb; 14(1):636. PubMed ID: 36788205 [TBL] [Abstract][Full Text] [Related]
85. Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Nakayama Y; Manucharyan G; Zhang H; Dutrieux P; Torres HS; Klein P; Seroussi H; Schodlok M; Rignot E; Menemenlis D Sci Rep; 2019 Nov; 9(1):16649. PubMed ID: 31757979 [TBL] [Abstract][Full Text] [Related]
86. A decade of progress in observing and modelling Antarctic subglacial water systems. Fricker HA; Siegfried MR; Carter SP; Scambos TA Philos Trans A Math Phys Eng Sci; 2016 Jan; 374(2059):. PubMed ID: 26667904 [TBL] [Abstract][Full Text] [Related]
87. Technologies for retrieving sediment cores in Antarctic subglacial settings. Hodgson DA; Bentley MJ; Smith JA; Klepacki J; Makinson K; Smith AM; Saw K; Scherer R; Powell R; Tulaczyk S; Rose M; Pearce D; Mowlem M; Keen P; Siegert MJ Philos Trans A Math Phys Eng Sci; 2016 Jan; 374(2059):. PubMed ID: 26667918 [TBL] [Abstract][Full Text] [Related]
88. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Rintoul SR; Silvano A; Pena-Molino B; van Wijk E; Rosenberg M; Greenbaum JS; Blankenship DD Sci Adv; 2016 Dec; 2(12):e1601610. PubMed ID: 28028540 [TBL] [Abstract][Full Text] [Related]
89. Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years. Shakun JD; Corbett LB; Bierman PR; Underwood K; Rizzo DM; Zimmerman SR; Caffee MW; Naish T; Golledge NR; Hay CC Nature; 2018 Jun; 558(7709):284-287. PubMed ID: 29899483 [TBL] [Abstract][Full Text] [Related]
90. The identification, examination and exploration of Antarctic subglacial lakes. Siegert MJ Sci Prog; 2000; 83 ( Pt 3)():223-42. PubMed ID: 11077478 [TBL] [Abstract][Full Text] [Related]
91. Interplay of grounding-line dynamics and sub-shelf melting during retreat of the Bjørnøyrenna Ice Stream. Petrini M; Colleoni F; Kirchner N; Hughes ALC; Camerlenghi A; Rebesco M; Lucchi RG; Forte E; Colucci RR; Noormets R Sci Rep; 2018 May; 8(1):7196. PubMed ID: 29740089 [TBL] [Abstract][Full Text] [Related]
92. A new sea-level record for the Neogene/Quaternary boundary reveals transition to a more stable East Antarctic Ice Sheet. Jakob KA; Wilson PA; Pross J; Ezard THG; Fiebig J; Repschläger J; Friedrich O Proc Natl Acad Sci U S A; 2020 Dec; 117(49):30980-30987. PubMed ID: 33229561 [TBL] [Abstract][Full Text] [Related]
93. Paleofluvial mega-canyon beneath the central Greenland ice sheet. Bamber JL; Siegert MJ; Griggs JA; Marshall SJ; Spada G Science; 2013 Aug; 341(6149):997-9. PubMed ID: 23990558 [TBL] [Abstract][Full Text] [Related]
94. History, mass loss, structure, and dynamic behavior of the Antarctic Ice Sheet. Bell RE; Seroussi H Science; 2020 Mar; 367(6484):1321-1325. PubMed ID: 32193319 [TBL] [Abstract][Full Text] [Related]
95. Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica. Davis CL; Venturelli RA; Michaud AB; Hawkings JR; Achberger AM; Vick-Majors TJ; Rosenheim BE; Dore JE; Steigmeyer A; Skidmore ML; Barker JD; Benning LG; Siegfried MR; Priscu JC; Christner BC; ISME Commun; 2023 Jan; 3(1):8. PubMed ID: 36717625 [TBL] [Abstract][Full Text] [Related]
96. Steep Glacier Bed Knickpoints Mitigate Inland Thinning in Greenland. Felikson D; A Catania G; Bartholomaus TC; Morlighem M; Noël BPY Geophys Res Lett; 2021 Jan; 48(2):e2020GL090112. PubMed ID: 33678924 [TBL] [Abstract][Full Text] [Related]
97. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Winkelmann R; Levermann A; Ridgwell A; Caldeira K Sci Adv; 2015 Sep; 1(8):e1500589. PubMed ID: 26601273 [TBL] [Abstract][Full Text] [Related]
98. Multisystem Synthesis of Radar Sounding Observations of the Amundsen Sea Sector From the 2004-2005 Field Season. Chu W; Hilger AM; Culberg R; Schroeder DM; Jordan TM; Seroussi H; Young DA; Blankenship DD; Vaughan DG J Geophys Res Earth Surf; 2021 Oct; 126(10):e2021JF006296. PubMed ID: 35865452 [TBL] [Abstract][Full Text] [Related]
99. The hysteresis of the Antarctic Ice Sheet. Garbe J; Albrecht T; Levermann A; Donges JF; Winkelmann R Nature; 2020 Sep; 585(7826):538-544. PubMed ID: 32968257 [TBL] [Abstract][Full Text] [Related]
100. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Lhermitte S; Sun S; Shuman C; Wouters B; Pattyn F; Wuite J; Berthier E; Nagler T Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24735-24741. PubMed ID: 32929004 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]