These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22837464)

  • 1. Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii.
    Tarttelin EE; Frigato E; Bellingham J; Di Rosa V; Berti R; Foulkes NS; Lucas RJ; Bertolucci C
    J Exp Biol; 2012 Aug; 215(Pt 16):2898-903. PubMed ID: 22837464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization.
    Calderoni L; Rota-Stabelli O; Frigato E; Panziera A; Kirchner S; Foulkes NS; Kruckenhauser L; Bertolucci C; Fuselli S
    Heredity (Edinb); 2016 Nov; 117(5):383-392. PubMed ID: 27485669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments.
    Kefalov VJ; Cornwall MC; Fain GL
    Methods Mol Biol; 2010; 652():95-114. PubMed ID: 20552424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-visual photoreception by a variety of vertebrate opsins.
    Kojima D; Fukada Y
    Novartis Found Symp; 1999; 224():265-79; discussion 279-82. PubMed ID: 10614056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus).
    Jokela-Määttä M; Vartio A; Paulin L; Donner K
    J Exp Biol; 2009 Nov; 212(Pt 21):3415-21. PubMed ID: 19837882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay.
    Tarttelin EE; Fransen MP; Edwards PC; Hankins MW; Schertler GF; Vogel R; Lucas RJ; Bellingham J
    Cell Mol Life Sci; 2011 Nov; 68(22):3713-23. PubMed ID: 21416149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.
    Delroisse J; Mallefet J; Flammang P
    PLoS One; 2016; 11(4):e0152988. PubMed ID: 27119739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-rod, non-cone photoreception in rodents and teleost fish.
    Foster RG; Hankins M; Lucas RJ; Jenkins A; Muñoz M; Thompson S; Appleford JM; Bellingham J
    Novartis Found Symp; 2003; 253():3-23; discussion 23-30, 52-5, 102-9. PubMed ID: 14712912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response.
    Davies WI; Turton M; Peirson SN; Follett BK; Halford S; Garcia-Fernandez JM; Sharp PJ; Hankins MW; Foster RG
    Biol Lett; 2012 Apr; 8(2):291-4. PubMed ID: 22031722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors.
    Flamarique IN; Cheng CL; Bergstrom C; Reimchen TE
    J Exp Biol; 2013 Feb; 216(Pt 4):656-67. PubMed ID: 23077162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish.
    Philp AR; Bellingham J; Garcia-Fernandez J; Foster RG
    FEBS Lett; 2000 Feb; 468(2-3):181-8. PubMed ID: 10692583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin A
    Corbo JC
    Dev Biol; 2021 Jul; 475():145-155. PubMed ID: 33684435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The photobleaching sequence of a short-wavelength visual pigment.
    Kusnetzow A; Dukkipati A; Babu KR; Singh D; Vought BW; Knox BE; Birge RR
    Biochemistry; 2001 Jul; 40(26):7832-44. PubMed ID: 11425310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebrate ancient opsin and melanopsin: divergent irradiance detectors.
    Davies WL; Hankins MW; Foster RG
    Photochem Photobiol Sci; 2010 Nov; 9(11):1444-57. PubMed ID: 20922256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position.
    Bellingham J; Whitmore D; Philp AR; Wells DJ; Foster RG
    Brain Res Mol Brain Res; 2002 Nov; 107(2):128-36. PubMed ID: 12487121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish.
    Hunt DM; Dulai KS; Partridge JC; Cottrill P; Bowmaker JK
    J Exp Biol; 2001 Oct; 204(Pt 19):3333-44. PubMed ID: 11606607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.
    Vought BW; Dukkipatti A; Max M; Knox BE; Birge RR
    Biochemistry; 1999 Aug; 38(35):11287-97. PubMed ID: 10471278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
    Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K
    PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (Pungitius pungitius).
    Saarinen P; Pahlberg J; Herczeg G; Viljanen M; Karjalainen M; Shikano T; Merilä J; Donner K
    J Exp Biol; 2012 Aug; 215(Pt 16):2760-73. PubMed ID: 22837448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.