These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22837642)

  • 1. DNA structural properties in the classification of genomic transcription regulation elements.
    Meysman P; Marchal K; Engelen K
    Bioinform Biol Insights; 2012; 6():155-68. PubMed ID: 22837642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of structural DNA properties for the prediction of transcription-factor binding sites in Escherichia coli.
    Meysman P; Dang TH; Laukens K; De Smet R; Wu Y; Marchal K; Engelen K
    Nucleic Acids Res; 2011 Jan; 39(2):e6. PubMed ID: 21051340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of DNA sequence based structural features of promoters in transcription initiation and gene expression.
    Bansal M; Kumar A; Yella VR
    Curr Opin Struct Biol; 2014 Apr; 25():77-85. PubMed ID: 24503515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regions.
    Liu G; Liu GJ; Tan JX; Lin H
    Genomics; 2019 Sep; 111(5):1167-1175. PubMed ID: 30055231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture.
    Wang S; Zhang Q; Shen Z; He Y; Chen ZH; Li J; Huang DS
    Mol Ther Nucleic Acids; 2021 Jun; 24():154-163. PubMed ID: 33767912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational and physicochemical DNA features specific for transcription factor binding sites.
    Ponomarenko JV; Ponomarenko MP; Frolov AS; Vorobyev DG; Overton GC; Kolchanov NA
    Bioinformatics; 1999; 15(7-8):654-68. PubMed ID: 10487873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast.
    Deniz O; Flores O; Battistini F; Pérez A; Soler-López M; Orozco M
    BMC Genomics; 2011 Oct; 12():489. PubMed ID: 21981773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA physical properties determine nucleosome occupancy from yeast to fly.
    Miele V; Vaillant C; d'Aubenton-Carafa Y; Thermes C; Grange T
    Nucleic Acids Res; 2008 Jun; 36(11):3746-56. PubMed ID: 18487627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens.
    Prados J; Linder P; Redder P
    BMC Genomics; 2016 Nov; 17(1):849. PubMed ID: 27806702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice.
    Nijhawan A; Jain M; Tyagi AK; Khurana JP
    Plant Physiol; 2008 Feb; 146(2):333-50. PubMed ID: 18065552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis).
    Sodhi M; Mukesh M; Kishore A; Mishra BP; Kataria RS; Joshi BK
    Gene; 2013 Sep; 527(2):606-15. PubMed ID: 23792016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of sequence-dependent DNA features correlating to activity of DNA sites interacting with proteins.
    Ponomarenko MP; Ponomarenko JV; Frolov AS; Podkolodny NL; Savinkova LK; Kolchanov NA; Overton GC
    Bioinformatics; 1999; 15(7-8):687-703. PubMed ID: 10487875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G+C content dominates intrinsic nucleosome occupancy.
    Tillo D; Hughes TR
    BMC Bioinformatics; 2009 Dec; 10():442. PubMed ID: 20028554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genomic code for nucleosome positioning.
    Segal E; Fondufe-Mittendorf Y; Chen L; Thåström A; Field Y; Moore IK; Wang JP; Widom J
    Nature; 2006 Aug; 442(7104):772-8. PubMed ID: 16862119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosome Organization in Human Embryonic Stem Cells.
    Yazdi PG; Pedersen BA; Taylor JF; Khattab OS; Chen YH; Chen Y; Jacobsen SE; Wang PH
    PLoS One; 2015; 10(8):e0136314. PubMed ID: 26305225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features based genome-wide characterization and prediction of nucleosome organization.
    Gan Y; Guan J; Zhou S; Zhang W
    BMC Bioinformatics; 2012 Mar; 13():49. PubMed ID: 22449207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of TF target sites based on atomistic models of protein-DNA complexes.
    Angarica VE; Pérez AG; Vasconcelos AT; Collado-Vides J; Contreras-Moreira B
    BMC Bioinformatics; 2008 Oct; 9():436. PubMed ID: 18922190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.