BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22837670)

  • 1. Fragment C of tetanus toxin: new insights into its neuronal signaling pathway.
    Calvo AC; Oliván S; Manzano R; Zaragoza P; Aguilera J; Osta R
    Int J Mol Sci; 2012; 13(6):6883-6901. PubMed ID: 22837670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons.
    Gil C; Chaib-Oukadour I; Aguilera J
    Biochem J; 2003 Jul; 373(Pt 2):613-20. PubMed ID: 12710887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction.
    Gil C; Chaib-Oukadour I; Blasi J; Aguilera J
    Biochem J; 2001 May; 356(Pt 1):97-103. PubMed ID: 11336640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of tetanus toxin: the arrangement of papain digestion products within the heavy chain-light chain framework of extracellular toxin.
    Neubauer V; Helting TB
    Biochim Biophys Acta; 1981 Mar; 668(1):141-8. PubMed ID: 7016194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simplified method for the preparation of tetanus toxin binding fragment for neurobiology.
    Fishman PS; Farrand DA; Halpern JL; Latham WC
    J Neurosci Methods; 1992 May; 42(3):229-36. PubMed ID: 1380109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons.
    Herreros J; Lalli G; Montecucco C; Schiavo G
    J Neurochem; 2000 May; 74(5):1941-50. PubMed ID: 10800937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetanus Toxin Hc Fragment Induces the Formation of Ceramide Platforms and Protects Neuronal Cells against Oxidative Stress.
    Cubí R; Candalija A; Ortega A; Gil C; Aguilera J
    PLoS One; 2013; 8(6):e68055. PubMed ID: 23826362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetanus toxin H(C) fragment reduces neuronal MPP+ toxicity.
    Chaïb-Oukadour I; Gil C; Rodríguez-Alvarez J; Ortega A; Aguilera J
    Mol Cell Neurosci; 2009 Jul; 41(3):297-303. PubMed ID: 19344769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotrophic Properties of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Motor Neuron Disease.
    Herrando-Grabulosa M; Casas C; Talbot K; Aguilera J
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33096857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clathrin-dependent endocytosis is required for TrkB-dependent Akt-mediated neuronal protection and dendritic growth.
    Zheng J; Shen WH; Lu TJ; Zhou Y; Chen Q; Wang Z; Xiang T; Zhu YC; Zhang C; Duan S; Xiong ZQ
    J Biol Chem; 2008 May; 283(19):13280-8. PubMed ID: 18353779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways.
    Chaïb-Oukadour I; Gil C; Aguilera J
    J Neurochem; 2004 Sep; 90(5):1227-36. PubMed ID: 15312177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1.
    Deinhardt K; Berninghausen O; Willison HJ; Hopkins CR; Schiavo G
    J Cell Biol; 2006 Jul; 174(3):459-71. PubMed ID: 16880274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-derived neurotrophic factor facilitates in vivo internalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals.
    Roux S; Saint Cloment C; Curie T; Girard E; Miana Mena FJ; Barbier J; Osta R; Molgó J; Brûlet P
    Eur J Neurosci; 2006 Sep; 24(6):1546-54. PubMed ID: 17004918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of neutralizing monoclonal antibodies directed against tetanus toxin fragment C.
    Yousefi M; Tahmasebi F; Younesi V; Razavi A; Khoshnoodi J; Bayat AA; Abbasi E; Rabbani H; Jeddi-Tehrani M; Shokri F
    J Immunotoxicol; 2014; 11(1):28-34. PubMed ID: 23369087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrograde axonal transport of an exogenous enzyme covalently linked to B-IIb fragment of tetanus toxin.
    Beaude P; Delacour A; Bizzini B; Domuado D; Remy MH
    Biochem J; 1990 Oct; 271(1):87-91. PubMed ID: 1699518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrograde transneuronal transfer of the C-fragment of tetanus toxin.
    Fishman PS; Carrigan DR
    Brain Res; 1987 Mar; 406(1-2):275-9. PubMed ID: 3567626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-level Expression of Tetanus Toxin Fragment C in Escherichia coli.
    Aghaiypour K; Teymourpour R
    Arch Razi Inst; 2018 Dec; 73(1):27-38. PubMed ID: 30256036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of mutants of tetanus toxin Hc fragment: ganglioside binding, cell binding and retrograde axonal transport properties.
    Sinha K; Box M; Lalli G; Schiavo G; Schneider H; Groves M; Siligardi G; Fairweather N
    Mol Microbiol; 2000 Sep; 37(5):1041-51. PubMed ID: 10972823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the B-IIb tetanus toxin derived fragment as a specific neuropharmacological transport agent.
    Bizzini B; Grob P; Glicksman MA; Akert K
    Brain Res; 1980 Jul; 193(1):221-7. PubMed ID: 6155177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A means for targeting therapeutics to peripheral nervous system neurons with axonal damage.
    Federici T; Liu JK; Teng Q; Yang J; Boulis NM
    Neurosurgery; 2007 May; 60(5):911-8; discussion 911-8. PubMed ID: 17460527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.