These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22837817)
21. Vavraia culicis (Weiser, 1947) Weiser, 1977 revisited: cytological characterisation of a Vavraia culicis-like microsporidium isolated from mosquitoes in Florida and the establishment of Vavraia culicis floridensis subsp. n. Vávra J; Becnel JJ Folia Parasitol (Praha); 2007 Nov; 54(4):259-71. PubMed ID: 18303767 [TBL] [Abstract][Full Text] [Related]
22. Effect of per os Edhazardia aedis (Microsporida: Amblyosporidae) infection on Aedes aegypti mortality and body size. Nasci RS; Tang KH; Becnel JJ; Fukuda T J Am Mosq Control Assoc; 1992 Jun; 8(2):131-6. PubMed ID: 1431854 [TBL] [Abstract][Full Text] [Related]
23. Brazilian Aedes aegypti as a Competent Vector for Multiple Complex Arboviral Coinfections. Rodrigues NB; Godoy RSM; Orfano AS; Chaves BA; Campolina TB; Costa BDA; Félix LDS; Silva BM; Norris DE; Pimenta PFP; Secundino NFC J Infect Dis; 2021 Jul; 224(1):101-108. PubMed ID: 33544850 [TBL] [Abstract][Full Text] [Related]
24. The Role of the Environment in the Evolution of Tolerance and Resistance to a Pathogen. Zeller M; Koella JC Am Nat; 2017 Sep; 190(3):389-397. PubMed ID: 28829641 [TBL] [Abstract][Full Text] [Related]
25. Infectious dose affects the outcome of the within-host competition between parasites. Fellous S; Koella JC Am Nat; 2009 Jun; 173(6):E177-84. PubMed ID: 19320595 [TBL] [Abstract][Full Text] [Related]
26. Virulence and resistance in a mosquito-microsporidium interaction. Michalakis Y; Bédhomme S; Biron DG; Rivero A; Sidobre C; Agnew P Evol Appl; 2008 Feb; 1(1):49-56. PubMed ID: 25567490 [TBL] [Abstract][Full Text] [Related]
27. Host-specific effects of a generalist parasite of mosquitoes. Zeferino TG; Koella JC Sci Rep; 2024 Aug; 14(1):18365. PubMed ID: 39112600 [TBL] [Abstract][Full Text] [Related]
29. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan. Tsai CH; Chen TH; Lin C; Shu PY; Su CL; Teng HJ Parasit Vectors; 2017 Nov; 10(1):551. PubMed ID: 29116011 [TBL] [Abstract][Full Text] [Related]
30. Microsporidiosis (Microsporidia: Culicosporidae) alters blood-feeding responses and DEET repellency in Aedes aegypti (Diptera: Culicidae). Barnard DR; Xue RD; Rotstein MA; Becnel JJ J Med Entomol; 2007 Nov; 44(6):1040-6. PubMed ID: 18047204 [TBL] [Abstract][Full Text] [Related]
31. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus. Vazeille M; Gaborit P; Mousson L; Girod R; Failloux AB BMC Infect Dis; 2016 Jul; 16():318. PubMed ID: 27390932 [TBL] [Abstract][Full Text] [Related]
32. Parasitism of Ascogregarina taiwanensis and Ascogregarina culicis (Apicomplexa: Lecudinidae) in larvae of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) from Manaus, Amazon region, Brazil. Dos Passos RA; Tadei WP J Invertebr Pathol; 2008 Mar; 97(3):230-6. PubMed ID: 18028941 [TBL] [Abstract][Full Text] [Related]
33. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions. Ross PA; Endersby NM; Hoffmann AA PLoS Negl Trop Dis; 2016 Jan; 10(1):e0004320. PubMed ID: 26745630 [TBL] [Abstract][Full Text] [Related]
34. Presence of Ascogregarina culicis and Ascogregarina sp. in natural sympatric populations of Aedes aegypti and Ae. albopictus (Diptera: Culicidae) in Argentina. Alonso AC; Stein M; Micieli MV An Acad Bras Cienc; 2021; 93(2):e20200058. PubMed ID: 34105613 [TBL] [Abstract][Full Text] [Related]
35. A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis. Bargielowski I; Koella JC PLoS One; 2009; 4(3):e4676. PubMed ID: 19277119 [TBL] [Abstract][Full Text] [Related]
36. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Pan X; Zhou G; Wu J; Bian G; Lu P; Raikhel AS; Xi Z Proc Natl Acad Sci U S A; 2012 Jan; 109(1):E23-31. PubMed ID: 22123956 [TBL] [Abstract][Full Text] [Related]
37. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae). Silva JBL; Magalhães Alves D; Bottino-Rojas V; Pereira TN; Sorgine MHF; Caragata EP; Moreira LA PLoS One; 2017; 12(7):e0181678. PubMed ID: 28732048 [TBL] [Abstract][Full Text] [Related]
38. The effect of parasite infection on the recombination rate of the mosquito Aedes aegypti. Zilio G; Moesch L; Bovet N; Sarr A; Koella JC PLoS One; 2018; 13(10):e0203481. PubMed ID: 30300349 [TBL] [Abstract][Full Text] [Related]
39. The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. Caragata EP; Pais FS; Baton LA; Silva JB; Sorgine MH; Moreira LA BMC Genomics; 2017 Jan; 18(1):6. PubMed ID: 28049478 [TBL] [Abstract][Full Text] [Related]
40. Role of gregarine parasite Ascogregarina culicis (Apicomplexa: Lecudinidae) in the maintenance of Chikungunya virus in vector mosquito. Moury DT; Singh DK; Yadav P; Gokhale MD; Barde PV; Narayan NB; Thakare JP; Mishra AC; Shouche YS J Eukaryot Microbiol; 2003; 50(5):379-82. PubMed ID: 14563178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]