These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue. Jeffery JA; Thi Yen N; Nam VS; Nghia le T; Hoffmann AA; Kay BH; Ryan PA PLoS Negl Trop Dis; 2009 Nov; 3(11):e552. PubMed ID: 19956588 [TBL] [Abstract][Full Text] [Related]
45. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Alavi Y; Arai M; Mendoza J; Tufet-Bayona M; Sinha R; Fowler K; Billker O; Franke-Fayard B; Janse CJ; Waters A; Sinden RE Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877 [TBL] [Abstract][Full Text] [Related]
46. Detection of dengue viruses and Wolbachia in Aedes aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, Malaysia. Teo CHJ; Lim PKC; Voon K; Mak JW Trop Biomed; 2017 Sep; 34(3):583-597. PubMed ID: 33592927 [TBL] [Abstract][Full Text] [Related]
47. Host genotype and environment affect the trade-off between horizontal and vertical transmission of the parasite Edhazardia aedis. Zilio G; Thiévent K; Koella JC BMC Evol Biol; 2018 Apr; 18(1):59. PubMed ID: 29699504 [TBL] [Abstract][Full Text] [Related]
48. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. Williams BA; Lee RC; Becnel JJ; Weiss LM; Fast NM; Keeling PJ BMC Genomics; 2008 Apr; 9():200. PubMed ID: 18445287 [TBL] [Abstract][Full Text] [Related]
49. Virulence reaction norms across a food gradient. Bedhomme S; Agnew P; Sidobre C; Michalakis Y Proc Biol Sci; 2004 Apr; 271(1540):739-44. PubMed ID: 15209108 [TBL] [Abstract][Full Text] [Related]
50. Phylogeny of amblyospora (Microsporida: amblyosporidae) and related genera based on small subunit ribosomal DNA data: A possible example of host parasite cospeciation. Baker MD; Vossbrinck CR; Becnel JJ; Andreadis TG J Invertebr Pathol; 1998 May; 71(3):199-206. PubMed ID: 9538024 [TBL] [Abstract][Full Text] [Related]
51. Sequential Infection of Magalhaes T; Robison A; Young MC; Black WC; Foy BD; Ebel GD; Rückert C Insects; 2018 Dec; 9(4):. PubMed ID: 30513725 [TBL] [Abstract][Full Text] [Related]
52. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Moreira LA; Iturbe-Ormaetxe I; Jeffery JA; Lu G; Pyke AT; Hedges LM; Rocha BC; Hall-Mendelin S; Day A; Riegler M; Hugo LE; Johnson KN; Kay BH; McGraw EA; van den Hurk AF; Ryan PA; O'Neill SL Cell; 2009 Dec; 139(7):1268-78. PubMed ID: 20064373 [TBL] [Abstract][Full Text] [Related]
53. Intracellular Interactions Between Arboviruses and Reyes JIL; Suzuki Y; Carvajal T; Muñoz MNM; Watanabe K Front Cell Infect Microbiol; 2021; 11():690087. PubMed ID: 34249780 [No Abstract] [Full Text] [Related]
54. Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells. Parry R; Asgari S J Virol; 2018 Sep; 92(17):. PubMed ID: 29950416 [TBL] [Abstract][Full Text] [Related]
55. The microsporidian parasite Vavraia culicis as a potential late life-acting control agent of malaria. Lorenz LM; Koella JC Evol Appl; 2011 Nov; 4(6):783-90. PubMed ID: 25568022 [TBL] [Abstract][Full Text] [Related]
56. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management. Joubert DA; Walker T; Carrington LB; De Bruyne JT; Kien DH; Hoang Nle T; Chau NV; Iturbe-Ormaetxe I; Simmons CP; O'Neill SL PLoS Pathog; 2016 Feb; 12(2):e1005434. PubMed ID: 26891349 [TBL] [Abstract][Full Text] [Related]
57. Screening of natural Wolbachia infection in Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus from Guadeloupe (French West Indies). Goindin D; Cannet A; Delannay C; Ramdini C; Gustave J; Atyame C; Vega-Rúa A Acta Trop; 2018 Sep; 185():314-317. PubMed ID: 29908171 [TBL] [Abstract][Full Text] [Related]
58. Infectivity and pathogenicity of Ascogregarina culicis (Eugregarinida: Lecudinidae) to Aedes aegypti (Diptera: Culicidae). Sulaiman I J Med Entomol; 1992 Jan; 29(1):1-4. PubMed ID: 1552514 [TBL] [Abstract][Full Text] [Related]
59. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. Eisen L; Moore CG J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440 [TBL] [Abstract][Full Text] [Related]
60. New findings on the developmental process of Ascogregarina taiwanensis and Ascogregarina culicis in Aedes albopictus and Aedes aegypti. Roychoudhury S; Kobayashi M J Am Mosq Control Assoc; 2006 Mar; 22(1):29-36. PubMed ID: 16646318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]