BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22838408)

  • 1. Oxidation of myofibrillar proteins and impaired functionality: underlying mechanisms of the carbonylation pathway.
    Utrera M; Estévez M
    J Agric Food Chem; 2012 Aug; 60(32):8002-11. PubMed ID: 22838408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of trolox, quercetin, genistein and gallic acid on the oxidative damage to myofibrillar proteins: the carbonylation pathway.
    Utrera M; Estévez M
    Food Chem; 2013 Dec; 141(4):4000-9. PubMed ID: 23993577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of phenolic compounds on the formation of alpha-aminoadipic and gamma-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin.
    Estévez M; Heinonen M
    J Agric Food Chem; 2010 Apr; 58(7):4448-55. PubMed ID: 20196602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonylation of myofibrillar proteins through the maillard pathway: effect of reducing sugars and reaction temperature.
    Villaverde A; Estévez M
    J Agric Food Chem; 2013 Mar; 61(12):3140-7. PubMed ID: 23438261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does oxidation affect the water functionality of myofibrillar proteins?
    Bertram HC; Kristensen M; Østdal H; Baron CP; Young JF; Andersen HJ
    J Agric Food Chem; 2007 Mar; 55(6):2342-8. PubMed ID: 17316016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein carbonyls in meat systems: a review.
    Estévez M
    Meat Sci; 2011 Nov; 89(3):259-79. PubMed ID: 21621336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: effect of muscle type, premincing, and packaging.
    Estévez M; Ventanas S; Heinonen M; Puolanne E
    J Agric Food Chem; 2011 May; 59(10):5435-43. PubMed ID: 21506554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems.
    Park D; Xiong YL; Alderton AL; Ooizumi T
    J Agric Food Chem; 2006 Jun; 54(12):4445-51. PubMed ID: 16756379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative and nitrosative stress induced in myofibrillar proteins by a hydroxyl-radical-generating system: impact of nitrite and ascorbate.
    Villaverde A; Parra V; Estévez M
    J Agric Food Chem; 2014 Mar; 62(10):2158-64. PubMed ID: 24547988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of epicatechin on oxidation-induced physicochemical and digestibility changes in porcine myofibrillar proteins during refrigerated storage.
    Xu M; Sun M; Lu C; Han Y; Yao X; Niu X; Xu M; Zhu Q
    J Sci Food Agric; 2021 Jan; 101(2):746-753. PubMed ID: 32706121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of skeletal muscle myofibrillar proteins in oil-in-water emulsions: interaction with lipids and effect of selected phenolic compounds.
    Estévez M; Kylli P; Puolanne E; Kivikari R; Heinonen M
    J Agric Food Chem; 2008 Nov; 56(22):10933-40. PubMed ID: 18975964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apple phenolics as inhibitors of the carbonylation pathway during in vitro metal-catalyzed oxidation of myofibrillar proteins.
    Rysman T; Utrera M; Morcuende D; Van Royen G; Van Weyenberg S; De Smet S; Estévez M
    Food Chem; 2016 Nov; 211():784-90. PubMed ID: 27283697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxidation on the gel properties of porcine myofibrillar proteins and their binding abilities with selected flavour compounds.
    Shen H; Stephen Elmore J; Zhao M; Sun W
    Food Chem; 2020 Nov; 329():127032. PubMed ID: 32505986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Role (Anti- and Pro-oxidant) of Gallic Acid in Mediating Myofibrillar Protein Gelation and Gel in Vitro Digestion.
    Cao Y; True AD; Chen J; Xiong YL
    J Agric Food Chem; 2016 Apr; 64(15):3054-61. PubMed ID: 27003685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New method for the quantitative determination of major protein carbonyls, alpha-aminoadipic and gamma-glutamic semialdehydes: investigation of the formation mechanism and chemical nature in vitro and in vivo.
    Akagawa M; Sasaki D; Ishii Y; Kurota Y; Yotsu-Yamashita M; Uchida K; Suyama K
    Chem Res Toxicol; 2006 Aug; 19(8):1059-65. PubMed ID: 16918245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gelation properties of myofibrillar protein under malondialdehyde-induced oxidative stress.
    Wang L; Zhang M; Fang Z; Bhandari B
    J Sci Food Agric; 2017 Jan; 97(1):50-57. PubMed ID: 26916602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein oxidation enhances hydration but suppresses water-holding capacity in porcine longissimus muscle.
    Liu Z; Xiong YL; Chen J
    J Agric Food Chem; 2010 Oct; 58(19):10697-704. PubMed ID: 20806938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of protein oxidation markers alpha-aminoadipic and gamma-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization (ESI)-multistage tandem mass spectrometry (MS).
    Estévez M; Ollilainen V; Heinonen M
    J Agric Food Chem; 2009 May; 57(9):3901-10. PubMed ID: 19326863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding.
    Bao Y; Boeren S; Ertbjerg P
    Meat Sci; 2018 Jan; 135():102-108. PubMed ID: 28968552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein.
    Yang J; Xiong YL
    J Agric Food Chem; 2015 Oct; 63(40):8896-904. PubMed ID: 26414649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.