BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22838498)

  • 1. Coordination chemistry with f-element complexes for an improved understanding of factors that contribute to extraction selectivity.
    Gorden AE; DeVore MA; Maynard BA
    Inorg Chem; 2013 Apr; 52(7):3445-58. PubMed ID: 22838498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural study of trivalent lanthanide and actinide complexes formed upon solvent extraction.
    Gannaz B; Antonio MR; Chiarizia R; Hill C; Cote G
    Dalton Trans; 2006 Oct; (38):4553-62. PubMed ID: 17016566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides.
    Hudson MJ; Harwood LM; Laventine DM; Lewis FW
    Inorg Chem; 2013 Apr; 52(7):3414-28. PubMed ID: 22867058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminophosphine Oxides: A Platform for Diversified Functions.
    Goud EV; Sivaramakrishna A; Vijayakrishna K
    Top Curr Chem (Cham); 2017 Feb; 375(1):10. PubMed ID: 28058632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering lanmodulin's selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions.
    Mattocks JA; Cotruvo JA; Deblonde GJ
    Chem Sci; 2022 May; 13(20):6054-6066. PubMed ID: 35685815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actinide chemistry in ionic liquids.
    Takao K; Bell TJ; Ikeda Y
    Inorg Chem; 2013 Apr; 52(7):3459-72. PubMed ID: 22873132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing.
    Nichols KP; Pompano RR; Li L; Gelis AV; Ismagilov RF
    J Am Chem Soc; 2011 Oct; 133(39):15721-9. PubMed ID: 21888347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organophosphorus Extractants: A Critical Choice for Actinides/Lanthanides Separation in Nuclear Fuel Cycle.
    Yang X; Xu L; Zhang A; Xiao C
    Chemistry; 2023 Jun; 29(33):e202300456. PubMed ID: 37013708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-Selective Supramolecular Capsules for Actinide Precipitation and Separation.
    O'Connell-Danes J; Ngwenya BT; Morrison CA; Nichol GS; Delmau LH; Love JB
    JACS Au; 2024 Feb; 4(2):798-806. PubMed ID: 38425904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural periodicity in the coordination chemistry of aqueous Pu(IV) sulfates.
    Wilson RE
    Inorg Chem; 2012 Aug; 51(16):8942-7. PubMed ID: 22845677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of actinides from spent nuclear fuel: A review.
    Veliscek-Carolan J
    J Hazard Mater; 2016 Nov; 318():266-281. PubMed ID: 27427893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of Am(iii)/Eu(iii) selectivity to aid the design of actinide-lanthanide separation agents.
    Bryantsev VS; Hay BP
    Dalton Trans; 2015 May; 44(17):7935-42. PubMed ID: 25824656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actinide Separation Inspired by Self-Assembled Metal-Polyphenolic Nanocages.
    Mei L; Ren P; Wu QY; Ke YB; Geng JS; Liu K; Xing XQ; Huang ZW; Hu KQ; Liu YL; Yuan LY; Mo G; Wu ZH; Gibson JK; Chai ZF; Shi WQ
    J Am Chem Soc; 2020 Sep; 142(39):16538-16545. PubMed ID: 32931700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences of Eu(III) and Cm(III) chemistry in ionic liquids: investigations by TRLFS.
    Stumpf S; Billard I; Panak PJ; Mekki S
    Dalton Trans; 2007 Jan; (2):240-8. PubMed ID: 17180192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory.
    Manna D; Ghanty TK
    Phys Chem Chem Phys; 2012 Aug; 14(31):11060-9. PubMed ID: 22763671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalency in Actinide Compounds.
    Pace KA; Klepov VV; Berseneva AA; Zur Loye HC
    Chemistry; 2021 Apr; 27(19):5835-5841. PubMed ID: 33283323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in actinide borate chemistry.
    Wang S; Alekseev EV; Depmeier W; Albrecht-Schmitt TE
    Chem Commun (Camb); 2011 Oct; 47(39):10874-85. PubMed ID: 21915396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination Chemistry of a Strongly-Donating Hydroxylamine with Early Actinides: An Investigation of Redox Properties and Electronic Structure.
    McSkimming A; Su J; Cheisson T; Gau MR; Carroll PJ; Batista ER; Yang P; Schelter EJ
    Inorg Chem; 2018 Apr; 57(8):4387-4394. PubMed ID: 29569906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the involvement of 5f orbitals in the bonding and reactivity of organometallic actinide compounds: thorium(IV) and uranium(IV) bis(hydrazonato) complexes.
    Cantat T; Graves CR; Jantunen KC; Burns CJ; Scott BL; Schelter EJ; Morris DE; Hay PJ; Kiplinger JL
    J Am Chem Soc; 2008 Dec; 130(51):17537-51. PubMed ID: 19053455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical properties and theoretical modeling of actinide complexes with a para-tert-Butylcalix[6]arene bearing phosphinoyl pendants. Extraction capability of the calixarene toward f elements.
    Ramírez Fde M; Varbanov S; Padilla J; Bünzli JC
    J Phys Chem B; 2008 Sep; 112(35):10976-88. PubMed ID: 18686994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.