These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22838847)

  • 1. Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.
    Petrowsky M; Fleshman A; Ismail M; Glatzhofer DT; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(33):10098-105. PubMed ID: 22838847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.
    Petrowsky M; Fleshman AM; Frech R
    J Phys Chem B; 2013 Mar; 117(10):2971-8. PubMed ID: 23414431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of ion transport in dilute tetrabutylammonium triflate-acetate solutions and self-diffusion in pure acetate liquids.
    Bopege DN; Petrowsky M; Fleshman AM; Frech R; Johnson MB
    J Phys Chem B; 2012 Jan; 116(1):71-6. PubMed ID: 22145961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2010 Jul; 114(26):8600-5. PubMed ID: 20552999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the compensated arrhenius formalism to dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Dec; 113(50):16118-23. PubMed ID: 19924841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular model of self diffusion in polar organic liquids: implications for conductivity and fluidity in polar organic liquids and electrolytes.
    Frech R; Petrowsky M
    J Phys Chem B; 2014 Mar; 118(9):2422-32. PubMed ID: 24559237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of ion transport: the compensated Arrhenius equation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Apr; 113(17):5996-6000. PubMed ID: 19338318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.
    Petrowsky M; Glatzhofer DT; Frech R
    J Phys Chem B; 2013 Nov; 117(46):14432-7. PubMed ID: 24156502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration dependence of molal conductivity and dielectric constant of 1-alcohol electrolytes using the compensated arrhenius formalism.
    Fleshman AM; Petrowsky M; Frech R
    J Phys Chem B; 2013 May; 117(17):5330-7. PubMed ID: 23527562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.
    Petrowsky M; Fleshman A; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(31):9303-9. PubMed ID: 22845017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass and charge transport in 1-alkyl-3-methylimidazolium triflate ionic liquids.
    Petrowsky M; Burba CM; Frech R
    J Chem Phys; 2013 Nov; 139(20):204502. PubMed ID: 24289359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion transport with charge-protected and non-charge-protected cations in alcohol-based electrolytes using the compensated Arrhenius formalism. Part I: ionic conductivity and the static dielectric constant.
    Petrowsky M; Fleshman A; Frech R
    J Phys Chem B; 2012 May; 116(19):5760-5. PubMed ID: 22559992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.
    Fleshman AM; Forsythe GE; Petrowsky M; Frech R
    J Phys Chem B; 2016 Sep; 120(37):9959-68. PubMed ID: 27580069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: temperature dependence.
    Pradhan T; Gazi HA; Biswas R
    J Chem Phys; 2009 Aug; 131(5):054507. PubMed ID: 19673574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass and Ion Transport in Ketones and Ketone Electrolytes: Comparison with Acetate Systems.
    Bopege DN; Petrowsky M; Johnson MB; Frech R
    J Solution Chem; 2013 Mar; 42(3):584-591. PubMed ID: 23543864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration dependence of ionic transport in dilute organic electrolyte solutions.
    Petrowsky M; Frech R
    J Phys Chem B; 2008 Jul; 112(28):8285-90. PubMed ID: 18570459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.
    Longinotti MP; Corti HR
    J Phys Chem B; 2009 Apr; 113(16):5500-7. PubMed ID: 19326883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stokes shift dynamics in ionic liquids: temperature dependence.
    Kashyap HK; Biswas R
    J Phys Chem B; 2010 Dec; 114(50):16811-23. PubMed ID: 21126013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass and charge transport in cyclic carbonates: implications for improved lithium ion battery electrolytes.
    Petrowsky M; Ismail M; Glatzhofer DT; Frech R
    J Phys Chem B; 2013 May; 117(19):5963-70. PubMed ID: 23597103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dielectric properties of solvents on the quality factor for a beyond 900 MHz cryogenic probe model.
    Horiuchi T; Takahashi M; Kikuchi J; Yokoyama S; Maeda H
    J Magn Reson; 2005 May; 174(1):34-42. PubMed ID: 15809170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.