These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 22839110)
21. Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene. Hu F; Liu J; Du G; Hua Z; Zhou J; Chen J Biotechnol Lett; 2012 Aug; 34(8):1505-9. PubMed ID: 22526424 [TBL] [Abstract][Full Text] [Related]
22. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Kong QX; Gu JG; Cao LM; Zhang AL; Chen X; Zhao XM Biotechnol Lett; 2006 Dec; 28(24):2033-8. PubMed ID: 17043906 [TBL] [Abstract][Full Text] [Related]
23. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2. Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249 [TBL] [Abstract][Full Text] [Related]
24. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
25. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480 [TBL] [Abstract][Full Text] [Related]
26. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Piddocke MP; Kreisz S; Heldt-Hansen HP; Nielsen KF; Olsson L Appl Microbiol Biotechnol; 2009 Sep; 84(3):453-64. PubMed ID: 19343343 [TBL] [Abstract][Full Text] [Related]
27. Polygenic Analysis in Absence of Major Effector Holt S; Trindade de Carvalho B; Foulquié-Moreno MR; Thevelein JM mBio; 2018 Aug; 9(4):. PubMed ID: 30154260 [TBL] [Abstract][Full Text] [Related]
28. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A; Nakamura T; Shima J FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341 [TBL] [Abstract][Full Text] [Related]
29. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
30. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach. Teixeira MC; Raposo LR; Palma M; Sá-Correia I OMICS; 2010 Apr; 14(2):201-10. PubMed ID: 20210661 [TBL] [Abstract][Full Text] [Related]
31. Improvement of Multiple-Stress Tolerance and Ethanol Production in Yeast during Very-High-Gravity Fermentation by Supplementation of Wheat-Gluten Hydrolysates and Their Ultrafiltration Fractions. Yang H; Zong X; Xu Y; Zeng Y; Zhao H J Agric Food Chem; 2018 Oct; 66(39):10233-10241. PubMed ID: 30203970 [TBL] [Abstract][Full Text] [Related]
32. How fungal multidrug transporters mediate hyper resistance through DNA amplification and mutation. Banerjee A; Rahman H; Prasad R; Golin J Mol Microbiol; 2022 Jul; 118(1-2):3-15. PubMed ID: 35611562 [TBL] [Abstract][Full Text] [Related]
33. Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast. Kato S; Yamauchi Y; Izawa S Appl Microbiol Biotechnol; 2018 Nov; 102(22):9669-9677. PubMed ID: 30141081 [TBL] [Abstract][Full Text] [Related]
34. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering]. Zhang Q; Zhao X; Jiang R; Li Q; Bai F Sheng Wu Gong Cheng Xue Bao; 2009 Apr; 25(4):481-7. PubMed ID: 19637619 [TBL] [Abstract][Full Text] [Related]
35. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Guo ZP; Zhang L; Ding ZY; Shi GY Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600 [TBL] [Abstract][Full Text] [Related]
36. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074 [TBL] [Abstract][Full Text] [Related]
37. Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae. Wiedemann B; Boles E Appl Environ Microbiol; 2008 Apr; 74(7):2043-50. PubMed ID: 18263741 [TBL] [Abstract][Full Text] [Related]
38. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Henderson CM; Lozada-Contreras M; Jiranek V; Longo ML; Block DE Appl Environ Microbiol; 2013 Jan; 79(1):91-104. PubMed ID: 23064336 [TBL] [Abstract][Full Text] [Related]
39. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]