These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 22839110)
41. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F Appl Environ Microbiol; 2007 Aug; 73(15):4824-31. PubMed ID: 17557846 [TBL] [Abstract][Full Text] [Related]
42. Fermentation performance of lager yeast in high gravity beer fermentations with different sugar supplementations. Lei H; Xu H; Feng L; Yu Z; Zhao H; Zhao M J Biosci Bioeng; 2016 Nov; 122(5):583-588. PubMed ID: 27329414 [TBL] [Abstract][Full Text] [Related]
43. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. Geng P; Zhang L; Shi GY World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910 [TBL] [Abstract][Full Text] [Related]
44. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Pereira FB; Guimarães PM; Teixeira JA; Domingues L Biotechnol Lett; 2010 Nov; 32(11):1655-61. PubMed ID: 20574836 [TBL] [Abstract][Full Text] [Related]
45. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313 [TBL] [Abstract][Full Text] [Related]
47. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY Appl Microbiol Biotechnol; 2009 Feb; 82(2):287-92. PubMed ID: 19018525 [TBL] [Abstract][Full Text] [Related]
48. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
49. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
50. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
51. Mechanism of enhanced salt tolerance in Saccharomyces cerevisiae by CRZ1 overexpression. Zuo F; Wu Y; Sun Y; Xie C; Tang Y Sci Rep; 2024 Oct; 14(1):22875. PubMed ID: 39358483 [TBL] [Abstract][Full Text] [Related]
52. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762 [TBL] [Abstract][Full Text] [Related]
53. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice. Ramirez-Córdova J; Drnevich J; Madrigal-Pulido JA; Arrizon J; Allen K; Martínez-Velázquez M; Alvarez-Maya I Antonie Van Leeuwenhoek; 2012 Aug; 102(2):247-55. PubMed ID: 22535436 [TBL] [Abstract][Full Text] [Related]
54. Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Branco P; Sabir F; Diniz M; Carvalho L; Albergaria H; Prista C Appl Microbiol Biotechnol; 2019 Apr; 103(7):3073-3083. PubMed ID: 30734124 [TBL] [Abstract][Full Text] [Related]
55. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555 [TBL] [Abstract][Full Text] [Related]
56. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related]
57. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase. Lamour J; Wan C; Zhang M; Zhao X; Den Haan R FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31073597 [TBL] [Abstract][Full Text] [Related]
58. Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae. Coste AT; Ramsdale M; Ischer F; Sanglard D Microbiology (Reading); 2008 May; 154(Pt 5):1491-1501. PubMed ID: 18451058 [TBL] [Abstract][Full Text] [Related]
59. Blocking Mitophagy Does Not Significantly Improve Fuel Ethanol Production in Bioethanol Yeast Saccharomyces cerevisiae. Eliodório KP; de Gois E Cunha GC; White BA; Patel DHM; Zhang F; Hettema EH; Basso TO; Gombert AK; Raghavendran V Appl Environ Microbiol; 2022 Mar; 88(5):e0206821. PubMed ID: 35044803 [TBL] [Abstract][Full Text] [Related]
60. Stable N-acetyltransferase Mpr1 improves ethanol productivity in the sake yeast Saccharomyces cerevisiae. Ohashi M; Nasuno R; Watanabe D; Takagi H J Ind Microbiol Biotechnol; 2019 Jul; 46(7):1039-1045. PubMed ID: 30963326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]