These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22839524)

  • 1. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode.
    Zhou H; Park JH; Fan FR; Bard AJ
    J Am Chem Soc; 2012 Aug; 134(32):13212-5. PubMed ID: 22839524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes.
    Dasari R; Tai K; Robinson DA; Stevenson KJ
    ACS Nano; 2014 May; 8(5):4539-46. PubMed ID: 24708257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.
    Shin C; Park TE; Park C; Kwon SJ
    Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions.
    Kim J; Kim BK; Cho SK; Bard AJ
    J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode.
    Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ
    J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes.
    Kwon SJ; Fan FR; Bard AJ
    J Am Chem Soc; 2010 Sep; 132(38):13165-7. PubMed ID: 20809574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles.
    Kleijn SE; Serrano-Bou B; Yanson AI; Koper MT
    Langmuir; 2013 Feb; 29(6):2054-64. PubMed ID: 23320415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.
    Dasari R; Robinson DA; Stevenson KJ
    J Am Chem Soc; 2013 Jan; 135(2):570-3. PubMed ID: 23270578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open circuit (mixed) potential changes upon contact between different inert electrodes-size and kinetic effects.
    Park JH; Zhou H; Percival SJ; Zhang B; Fan FR; Bard AJ
    Anal Chem; 2013 Jan; 85(2):964-70. PubMed ID: 23240811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes.
    Dasari R; Walther B; Robinson DA; Stevenson KJ
    Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of individual semiconducting nanoparticle collisions by stochastic photoelectrochemical currents.
    Fernando A; Parajuli S; Alpuche-Aviles MA
    J Am Chem Soc; 2013 Jul; 135(30):10894-7. PubMed ID: 23862766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode.
    Lebègue E; Anderson CM; Dick JE; Webb LJ; Bard AJ
    Langmuir; 2015 Oct; 31(42):11734-9. PubMed ID: 26474107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts.
    Robinson DA; Kondajji AM; Castañeda AD; Dasari R; Crooks RM; Stevenson KJ
    J Phys Chem Lett; 2016 Jul; 7(13):2512-7. PubMed ID: 27306603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Solutions and Determination of Sensitivity Factors at Platinum Ultramicroelectrodes.
    Percival SJ; Bard AJ
    Anal Chem; 2017 Sep; 89(18):9843-9849. PubMed ID: 28825303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles.
    Pergantis SA; Jones-Lepp TL; Heithmar EM
    Anal Chem; 2012 Aug; 84(15):6454-62. PubMed ID: 22804728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.