BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 22840043)

  • 1. Properties of cellulose/pectins composites: implication for structural and mechanical properties of cell wall.
    Agoda-Tandjawa G; Durand S; Gaillard C; Garnier C; Doublier JL
    Carbohydr Polym; 2012 Oct; 90(2):1081-91. PubMed ID: 22840043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.
    Zykwinska A; Thibault JF; Ralet MC
    J Exp Bot; 2007; 58(7):1795-802. PubMed ID: 17383990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the contribution of cell wall polysaccharides to the mechanical properties of apple parenchyma tissue using exogenous enzymes.
    Videcoq P; Barbacci A; Assor C; Magnenet V; Arnould O; Le Gall S; Lahaye M
    J Exp Bot; 2017 Nov; 68(18):5137-5146. PubMed ID: 29036637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for in vitro binding of pectin side chains to cellulose.
    Zykwinska AW; Ralet MC; Garnier CD; Thibault JF
    Plant Physiol; 2005 Sep; 139(1):397-407. PubMed ID: 16126855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pectin impacts cellulose fibre architecture and hydrogel mechanics in the absence of calcium.
    Lopez-Sanchez P; Martinez-Sanz M; Bonilla MR; Wang D; Walsh CT; Gilbert EP; Stokes JR; Gidley MJ
    Carbohydr Polym; 2016 Nov; 153():236-245. PubMed ID: 27561492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly and enlargement of the primary cell wall in plants.
    Cosgrove DJ
    Annu Rev Cell Dev Biol; 1997; 13():171-201. PubMed ID: 9442872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages.
    Basanta MF; de Escalada Plá MF; Stortz CA; Rojas AM
    Carbohydr Polym; 2013 Jan; 92(1):830-41. PubMed ID: 23218373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall.
    Ralet MC; André-Leroux G; Quéméner B; Thibault JF
    Phytochemistry; 2005 Dec; 66(24):2800-14. PubMed ID: 16297942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation.
    Mikkelsen D; Gidley MJ
    Methods Mol Biol; 2011; 715():197-208. PubMed ID: 21222086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.
    Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA
    BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of arabinan or galactan during cellulose synthesis is extensive and reversible.
    Lin D; Lopez-Sanchez P; Gidley MJ
    Carbohydr Polym; 2015 Aug; 126():108-21. PubMed ID: 25933529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.
    White PB; Wang T; Park YB; Cosgrove DJ; Hong M
    J Am Chem Soc; 2014 Jul; 136(29):10399-409. PubMed ID: 24984197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating the mechanics of the primary plant cell wall to morphogenesis.
    Bidhendi AJ; Geitmann A
    J Exp Bot; 2016 Jan; 67(2):449-61. PubMed ID: 26689854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly.
    Lopez-Sanchez P; Martinez-Sanz M; Bonilla MR; Wang D; Gilbert EP; Stokes JR; Gidley MJ
    Carbohydr Polym; 2017 Apr; 162():71-81. PubMed ID: 28224897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope.
    Cybulska J; Zdunek A; Psonka-Antonczyk KM; Stokke BT
    Carbohydr Polym; 2013 Jan; 92(1):128-37. PubMed ID: 23218275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction.
    Park YB; Lee CM; Kafle K; Park S; Cosgrove DJ; Kim SH
    Biomacromolecules; 2014 Jul; 15(7):2718-24. PubMed ID: 24846814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal ion effects on hydraulic conductivity of bacterial cellulose-pectin composites used as plant cell wall analogs.
    McKenna BA; Kopittke PM; Wehr JB; Blamey FP; Menzies NW
    Physiol Plant; 2010 Feb; 138(2):205-14. PubMed ID: 20053181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct visualization of straw cell walls by AFM.
    Yan L; Li W; Yang J; Zhu Q
    Macromol Biosci; 2004 Feb; 4(2):112-8. PubMed ID: 15468201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.
    Wang T; Salazar A; Zabotina OA; Hong M
    Biochemistry; 2014 May; 53(17):2840-54. PubMed ID: 24720372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.