These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 22840195)
1. Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China. Zhu MX; Liu J; Yang GP; Li T; Yang RJ Mar Environ Res; 2012 Sep; 80():46-55. PubMed ID: 22840195 [TBL] [Abstract][Full Text] [Related]
2. Diagenesis of sulfur, iron and phosphorus in sediments of an urban bay impacted by multiple anthropogenic perturbations. Ma WW; Zhu MX; Yang GP; Li WJ; Meng T; Li T Mar Pollut Bull; 2019 Sep; 146():366-376. PubMed ID: 31426169 [TBL] [Abstract][Full Text] [Related]
3. Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture. Meng T; Zhu MX; Ma WW; Gan ZX Environ Sci Pollut Res Int; 2019 Mar; 26(7):6460-6471. PubMed ID: 30623326 [TBL] [Abstract][Full Text] [Related]
4. Spatial distribution of organic and pyritic sulfur in surface sediments of eutrophic Jiaozhou Bay, China: clues to anthropogenic impacts. Chen KK; Zhu MX; Yang GP; Fan DJ; Huang XL Mar Pollut Bull; 2014 Nov; 88(1-2):284-91. PubMed ID: 25220315 [TBL] [Abstract][Full Text] [Related]
5. Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Machado W; Carvalho MF; Santelli RE; Maddock JE Mar Pollut Bull; 2004 Jul; 49(1-2):89-92. PubMed ID: 15234877 [TBL] [Abstract][Full Text] [Related]
6. Monosulfidic black ooze accumulations in sediments of the Geographe Bay area, Western Australia. Ward NJ; Bush RT; Burton ED; Appleyard S; Wong S; Sullivan LA; Cheeseman PJ Mar Pollut Bull; 2010 Nov; 60(11):2130-6. PubMed ID: 20727554 [TBL] [Abstract][Full Text] [Related]
7. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: Insights into phosphorus mobilization and microbial iron reduction. Ma WW; Zhu MX; Yang GP; Li T Mar Pollut Bull; 2017 Nov; 124(1):400-410. PubMed ID: 28778383 [TBL] [Abstract][Full Text] [Related]
8. Redox-dependent phosphorus burial and regeneration in an offshore sulfidic sediment core in North Yellow Sea, China. Zhao G; Sheng Y; Jiang M; Yin X Mar Pollut Bull; 2019 Dec; 149():110582. PubMed ID: 31550573 [TBL] [Abstract][Full Text] [Related]
9. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation. Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083 [TBL] [Abstract][Full Text] [Related]
10. Reactive iron in marine sediments. Canfield DE Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783 [TBL] [Abstract][Full Text] [Related]
11. Organic matter and pyritization relationship in recent sediments from a tropical and eutrophic bay. Sabadini-Santos E; Senez TM; Silva TS; Moreira MR; Mendonça-Filho JG; Santelli RE; Crapez MAC Mar Pollut Bull; 2014 Dec; 89(1-2):220-228. PubMed ID: 25444621 [TBL] [Abstract][Full Text] [Related]
12. Assessing the impacts of differential depositional settings and/or anthropogenic perturbations on sulfur and iron diagenesis in sediments of the Bohai Sea and North Yellow Sea. Li WJ; Ma WW; Ren JH; Qin SS; Sun WX; Zhu MX Mar Pollut Bull; 2021 Nov; 172():112894. PubMed ID: 34464821 [TBL] [Abstract][Full Text] [Related]
13. Fractionation and extractability of sulfur, iron and trace elements in sulfidic sediments. Burton ED; Bush RT; Sullivan LA Chemosphere; 2006 Aug; 64(8):1421-8. PubMed ID: 16434078 [TBL] [Abstract][Full Text] [Related]
14. Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status. Zhuang W; Gao X Mar Pollut Bull; 2013 Nov; 76(1-2):128-38. PubMed ID: 24084376 [TBL] [Abstract][Full Text] [Related]
15. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization. Wu S; Zhao Y; Chen Y; Dong X; Wang M; Wang G Sci Total Environ; 2019 Mar; 657():1294-1303. PubMed ID: 30677896 [TBL] [Abstract][Full Text] [Related]
16. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments. Belzile N; Lang CY; Chen YW; Wang M Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305 [TBL] [Abstract][Full Text] [Related]
17. Sequestration of metals through association with pyrite in subtidal sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, China. Ye S; Laws EA; Zhong S; Ding X; Pang S Mar Pollut Bull; 2011 May; 62(5):934-41. PubMed ID: 21397276 [TBL] [Abstract][Full Text] [Related]
18. Arsenic fractionation in estuarine sediments: Does coastal eutrophication influence As behavior? Sá F; Sanders CJ; Patchineelam SR; Machado Eda C; Lombardi AT Mar Pollut Bull; 2015 Jul; 96(1-2):496-501. PubMed ID: 25931175 [TBL] [Abstract][Full Text] [Related]
19. [Effects of black spots of dead-cyanobacterial mats on Fe-S-P cycling in sediments of Zhushan Bay, Lake Taihu]. Liu GF; Zhong JC; He J; Zhang L; Fan CX Huan Jing Ke Xue; 2009 Sep; 30(9):2520-6. PubMed ID: 19927797 [TBL] [Abstract][Full Text] [Related]
20. Iron reactivity in anoxic sediments in the Ría de Vigo (NW Spain). Ramírez-Pérez AM; de Blas E Chemosphere; 2017 May; 174():8-19. PubMed ID: 28157610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]