These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22840325)
21. Essential-Oil Variability in a Collection of Ocimum basilicum L. (Basil) Cultivars. Maggio A; Roscigno G; Bruno M; De Falco E; Senatore F Chem Biodivers; 2016 Oct; 13(10):1357-1368. PubMed ID: 27444992 [TBL] [Abstract][Full Text] [Related]
22. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. Negin B; Moshelion M Plant Sci; 2016 Oct; 251():82-89. PubMed ID: 27593466 [TBL] [Abstract][Full Text] [Related]
23. "Help is in the air": volatiles from salt-stressed plants increase the reproductive success of receivers under salinity. Landi M; Araniti F; Flamini G; Piccolo EL; Trivellini A; Abenavoli MR; Guidi L Planta; 2020 Jan; 251(2):48. PubMed ID: 31932951 [TBL] [Abstract][Full Text] [Related]
24. Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties. Milić Komić S; Živanović B; Dumanović J; Kolarž P; Sedlarević Zorić A; Morina F; Vidović M; Veljović Jovanović S Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895033 [TBL] [Abstract][Full Text] [Related]
25. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na(+) loading and stomatal density. Shabala S; Hariadi Y; Jacobsen SE J Plant Physiol; 2013 Jul; 170(10):906-14. PubMed ID: 23485259 [TBL] [Abstract][Full Text] [Related]
26. Pretreatment with LEDs regulates antioxidant capacity and polyphenolic profile in two genotypes of basil under salinity stress. Rafeie M; Shabani L; Sabzalian MR; Gharibi S Protoplasma; 2022 Nov; 259(6):1567-1583. PubMed ID: 35318557 [TBL] [Abstract][Full Text] [Related]
27. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na Chen Y; Han Y; Kong X; Kang H; Ren Y; Wang W Physiol Plant; 2017 Feb; 159(2):161-177. PubMed ID: 27545692 [TBL] [Abstract][Full Text] [Related]
28. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species. Chakraborty K; Bose J; Shabala L; Eyles A; Shabala S Physiol Plant; 2016 Oct; 158(2):135-51. PubMed ID: 27062083 [TBL] [Abstract][Full Text] [Related]
29. Stomatal traits as a determinant of superior salinity tolerance in wild barley. Kiani-Pouya A; Rasouli F; Rabbi B; Falakboland Z; Yong M; Chen ZH; Zhou M; Shabala S J Plant Physiol; 2020 Feb; 245():153108. PubMed ID: 31927218 [TBL] [Abstract][Full Text] [Related]
30. Application of Super Absorbent Polymer and Plant Mucilage Improved Essential Oil Quantity and Quality of Beigi S; Azizi M; Iriti M Molecules; 2020 May; 25(11):. PubMed ID: 32481510 [TBL] [Abstract][Full Text] [Related]
31. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940 [TBL] [Abstract][Full Text] [Related]
32. Methyleugenol in Ocimum basilicum L. Cv. genovese gigante. Miele M; Dondero R; Ciarallo G; Mazzei M J Agric Food Chem; 2001 Jan; 49(1):517-21. PubMed ID: 11170620 [TBL] [Abstract][Full Text] [Related]
33. The impact of cold stress on genes expression pattern of mono- and sesquiterpene biosynthesis and their contents in Ocimum basilicum L. Majroomi Senji B; Abdollahi Mandoulakani B Phytochemistry; 2018 Dec; 156():250-256. PubMed ID: 30449303 [TBL] [Abstract][Full Text] [Related]
34. A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum. Srivastava S; Cahill DM; Conlan XA; Adholeya A J Agric Food Chem; 2014 Oct; 62(41):10064-75. PubMed ID: 25275827 [TBL] [Abstract][Full Text] [Related]
35. The functions of a cucumber phospholipase D alpha gene (CsPLDα) in growth and tolerance to hyperosmotic stress. Li S; Huang M; Di Q; Ji T; Wang X; Wei M; Shi Q; Li Y; Gong B; Yang F Plant Physiol Biochem; 2015 Dec; 97():175-86. PubMed ID: 26476791 [TBL] [Abstract][Full Text] [Related]
36. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Hassine AB; Lutts S J Plant Physiol; 2010 Nov; 167(17):1448-56. PubMed ID: 20869134 [TBL] [Abstract][Full Text] [Related]
37. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Penella C; Landi M; Guidi L; Nebauer SG; Pellegrini E; San Bautista A; Remorini D; Nali C; López-Galarza S; Calatayud A J Plant Physiol; 2016 Apr; 193():1-11. PubMed ID: 26918569 [TBL] [Abstract][Full Text] [Related]
38. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Muráriková A; Ťažký A; Neugebauerová J; Planková A; Jampílek J; Mučaji P; Mikuš P Molecules; 2017 Jul; 22(7):. PubMed ID: 28726757 [TBL] [Abstract][Full Text] [Related]
39. Alteration in Light Spectra Causes Opposite Responses in Volatile Phenylpropanoids and Terpenoids Compared with Phenolic Acids in Sweet Basil ( Kivimäenpä M; Mofikoya A; Abd El-Raheem AM; Riikonen J; Julkunen-Tiitto R; Holopainen JK J Agric Food Chem; 2022 Oct; 70(39):12287-12296. PubMed ID: 36126343 [TBL] [Abstract][Full Text] [Related]