These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22840407)

  • 1. An in vivo platform for rapid high-throughput antitubercular drug discovery.
    Takaki K; Cosma CL; Troll MA; Ramakrishnan L
    Cell Rep; 2012 Jul; 2(1):175-84. PubMed ID: 22840407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish.
    Takaki K; Davis JM; Winglee K; Ramakrishnan L
    Nat Protoc; 2013 Jun; 8(6):1114-24. PubMed ID: 23680983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol development for discovery of angiogenesis inhibitors via automated methods using zebrafish.
    Mauro A; Ng R; Li JY; Guan R; Wang Y; Singh KK; Wen XY
    PLoS One; 2019; 14(11):e0221796. PubMed ID: 31730619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput screen for tuberculosis progression.
    Carvalho R; de Sonneville J; Stockhammer OW; Savage ND; Veneman WJ; Ottenhoff TH; Dirks RP; Meijer AH; Spaink HP
    PLoS One; 2011 Feb; 6(2):e16779. PubMed ID: 21390204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Deconstructed Granuloma: A Complex High-Throughput Drug Screening Platform for the Discovery of Host-Directed Therapeutics Against Tuberculosis.
    Huang L; Kushner NL; Theriault ME; Pisu D; Tan S; McNamara CW; Petrassi HM; Russell DG; Brown AC
    Front Cell Infect Microbiol; 2018; 8():275. PubMed ID: 30155446
    [No Abstract]   [Full Text] [Related]  

  • 6. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass.
    Wang G; Rajpurohit SK; Delaspre F; Walker SL; White DT; Ceasrine A; Kuruvilla R; Li RJ; Shim JS; Liu JO; Parsons MJ; Mumm JS
    Elife; 2015 Jul; 4():. PubMed ID: 26218223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target Discovery for New Antitubercular Drugs Using a Large Dataset of Growth Inhibitors from PubChem.
    Goldman RC
    Infect Disord Drug Targets; 2020; 20(3):352-366. PubMed ID: 30520384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of anti-mycobacterial compounds in a naturally infected zebrafish larvae model.
    Dalton JP; Uy B; Okuda KS; Hall CJ; Denny WA; Crosier PS; Swift S; Wiles S
    J Antimicrob Chemother; 2017 Feb; 72(2):421-427. PubMed ID: 27798206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening.
    Grzelak EM; Choules MP; Gao W; Cai G; Wan B; Wang Y; McAlpine JB; Cheng J; Jin Y; Lee H; Suh JW; Pauli GF; Franzblau SG; Jaki BU; Cho S
    J Antibiot (Tokyo); 2019 Oct; 72(10):719-728. PubMed ID: 31292530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis?
    Goldman RC
    Tuberculosis (Edinb); 2013 Nov; 93(6):569-88. PubMed ID: 24119636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico analyses for the discovery of tuberculosis drug targets.
    Chung BK; Dick T; Lee DY
    J Antimicrob Chemother; 2013 Dec; 68(12):2701-9. PubMed ID: 23838951
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Parish T
    Expert Opin Drug Discov; 2020 Mar; 15(3):349-358. PubMed ID: 31899974
    [No Abstract]   [Full Text] [Related]  

  • 13. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening.
    Manjunatha UH; Smith PW
    Bioorg Med Chem; 2015 Aug; 23(16):5087-97. PubMed ID: 25577708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The zebrafish: a powerful platform for in vivo, HTS drug discovery.
    Delvecchio C; Tiefenbach J; Krause HM
    Assay Drug Dev Technol; 2011 Aug; 9(4):354-61. PubMed ID: 21309713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host-pathogen systems for early drug discovery against tuberculosis.
    Trofimov V; Costa-Gouveia J; Hoffmann E; Brodin P
    Curr Opin Microbiol; 2017 Oct; 39():143-151. PubMed ID: 29179041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future perspective: high-throughput construction of new ultrasensitive cytokine and virion liquid chips for high-throughput screening (HTS) of anti-inflammatory drugs or clinical diagnosis and treatment of inflammatory diseases.
    Feng Y; Huang J; Qu C; Huang M; Chen Z; Tang D; Xu Z; Wang B; Chen Z
    Anal Bioanal Chem; 2020 Nov; 412(28):7685-7699. PubMed ID: 32870351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing zebrafish chemical screens.
    Peterson RT; Fishman MC
    Methods Cell Biol; 2011; 105():525-41. PubMed ID: 21951546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Tan JL; Zon LI
    Methods Cell Biol; 2011; 105():493-516. PubMed ID: 21951544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streamlining drug discovery assays for cardiovascular disease using zebrafish.
    Pott A; Rottbauer W; Just S
    Expert Opin Drug Discov; 2020 Jan; 15(1):27-37. PubMed ID: 31570020
    [No Abstract]   [Full Text] [Related]  

  • 20. Testing tuberculosis drug efficacy in a zebrafish high-throughput translational medicine screen.
    Ordas A; Raterink RJ; Cunningham F; Jansen HJ; Wiweger MI; Jong-Raadsen S; Bos S; Bates RH; Barros D; Meijer AH; Vreeken RJ; Ballell-Pages L; Dirks RP; Hankemeier T; Spaink HP
    Antimicrob Agents Chemother; 2015 Feb; 59(2):753-62. PubMed ID: 25385118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.