BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22840517)

  • 1. Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion.
    Lambert FM; Combes D; Simmers J; Straka H
    Curr Biol; 2012 Sep; 22(18):1649-58. PubMed ID: 22840517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling.
    Chagnaud BP; Simmers J; Straka H
    Biol Cybern; 2012 Dec; 106(11-12):669-79. PubMed ID: 23179256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of locomotor efference copy in vertebrate gaze stabilization.
    Straka H; Lambert FM; Simmers J
    Front Neural Circuits; 2022; 16():1040070. PubMed ID: 36569798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis.
    von Uckermann G; Lambert FM; Combes D; Straka H; Simmers J
    J Exp Biol; 2016 Apr; 219(Pt 8):1110-21. PubMed ID: 27103674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Lambert FM; Combes D
    Front Neural Circuits; 2018; 12():95. PubMed ID: 30420798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus frogs.
    von Uckermann G; Le Ray D; Combes D; Straka H; Simmers J
    J Neurosci; 2013 Mar; 33(10):4253-64. PubMed ID: 23467343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving or being moved: that makes a difference.
    Straka H; Chagnaud BP
    J Neurol; 2017 Oct; 264(Suppl 1):28-33. PubMed ID: 28271408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of locomotion-induced oculomotor activity through evolution in mammals.
    França de Barros F; Bacqué-Cazenave J; Taillebuis C; Courtand G; Manuel M; Bras H; Tagliabue M; Combes D; Lambert FM; Beraneck M
    Curr Biol; 2022 Jan; 32(2):453-461.e4. PubMed ID: 34856124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Organization of Vestibulo-Ocular Responses in Abducens Motoneurons.
    Dietrich H; Glasauer S; Straka H
    J Neurosci; 2017 Apr; 37(15):4032-4045. PubMed ID: 28292832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogenetic Development of Vestibulo-Ocular Reflexes in Amphibians.
    Branoner F; Chagnaud BP; Straka H
    Front Neural Circuits; 2016; 10():91. PubMed ID: 27877114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective suppression of the vestibulo-ocular reflex during human locomotion.
    Dietrich H; Wuehr M
    J Neurol; 2019 Sep; 266(Suppl 1):101-107. PubMed ID: 31073715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotion-induced ocular motor behavior in larval Xenopus is developmentally tuned by visuo-vestibular reflexes.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Straka H; Combes D; Lambert FM
    Nat Commun; 2022 May; 13(1):2957. PubMed ID: 35618719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor efference copy signaling and gaze control: An evolutionary perspective.
    Lambert FM; Beraneck M; Straka H; Simmers J
    Curr Opin Neurobiol; 2023 Oct; 82():102761. PubMed ID: 37604066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for Gaze Stabilization Critically Depend on Locomotor Speed.
    Dietrich H; Wuehr M
    Neuroscience; 2019 Jun; 408():418-429. PubMed ID: 30703510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic organization principles of the VOR: lessons from frogs.
    Straka H; Dieringer N
    Prog Neurobiol; 2004 Jul; 73(4):259-309. PubMed ID: 15261395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis.
    Branoner F; Straka H
    Dev Neurobiol; 2015 Oct; 75(10):1051-67. PubMed ID: 25266079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Stabilization of the gaze in chameleons: visual and vestibular reflexes].
    Bennis M; Sansonetti A; Gioanni H
    C R Acad Sci III; 1990; 311(10):369-75. PubMed ID: 2125847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cooperation and substitution of the saccadic system and the reflexes of vestibular origin: should the "reflex" concept be revised?].
    Berthoz A
    Rev Neurol (Paris); 1989; 145(8-9):513-26. PubMed ID: 2682930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaze stabilization in chronic vestibular-loss and in cerebellar ataxia: interactions of feedforward and sensory feedback mechanisms.
    Sağlam M; Lehnen N
    J Vestib Res; 2014; 24(5-6):425-31. PubMed ID: 25564085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.