These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22840731)

  • 1. Effects of hip extensor fatigue on lower extremity kinematics during a jump-landing task in women: a controlled laboratory study.
    Hollman JH; Hohl JM; Kraft JL; Strauss JD; Traver KJ
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):903-9. PubMed ID: 22840731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of frontal-plane knee kinematics by hip-extensor strength and gluteus maximus recruitment during a jump-landing task in healthy women.
    Hollman JH; Hohl JM; Kraft JL; Strauss JD; Traver KJ
    J Sport Rehabil; 2013 Aug; 22(3):184-90. PubMed ID: 23579368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of relative hip and knee extensor muscle strength on landing biomechanics.
    Stearns KM; Keim RG; Powers CM
    Med Sci Sports Exerc; 2013 May; 45(5):935-41. PubMed ID: 23190597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hip abductor function and lower extremity landing kinematics: sex differences.
    Jacobs CA; Uhl TL; Mattacola CG; Shapiro R; Rayens WS
    J Athl Train; 2007; 42(1):76-83. PubMed ID: 17597947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation.
    Nyland JA; Shapiro R; Stine RL; Horn TS; Ireland ML
    J Orthop Sports Phys Ther; 1994 Sep; 20(3):132-7. PubMed ID: 7951289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of hip strength on gluteal activity and lower extremity kinematics.
    Homan KJ; Norcross MF; Goerger BM; Prentice WE; Blackburn JT
    J Electromyogr Kinesiol; 2013 Apr; 23(2):411-5. PubMed ID: 23246034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.
    Farrokhi S; Pollard CD; Souza RB; Chen YJ; Reischl S; Powers CM
    J Orthop Sports Phys Ther; 2008 Jul; 38(7):403-9. PubMed ID: 18591759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derecruitment of the lumbar musculature with fatiguing trunk extension exercise.
    Clark BC; Manini TM; Ploutz-Snyder LL
    Spine (Phila Pa 1976); 2003 Feb; 28(3):282-7. PubMed ID: 12567032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of lower extremity fatigue on shock attenuation during single-leg landing.
    Coventry E; O'Connor KM; Hart BA; Earl JE; Ebersole KT
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1090-7. PubMed ID: 16949185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbopelvic landing kinematics and EMG in women with contrasting hip strength.
    Popovich JM; Kulig K
    Med Sci Sports Exerc; 2012 Jan; 44(1):146-53. PubMed ID: 21659899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations to landing technique and patellar tendon loading in response to fatigue.
    Edwards S; Steele JR; Purdam CR; Cook JL; McGhee DE
    Med Sci Sports Exerc; 2014 Feb; 46(2):330-40. PubMed ID: 23852266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exercise-induced fatigue on postural control of the knee.
    Hassanlouei H; Arendt-Nielsen L; Kersting UG; Falla D
    J Electromyogr Kinesiol; 2012 Jun; 22(3):342-7. PubMed ID: 22366254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women.
    Hollman JH; Galardi CM; Lin IH; Voth BC; Whitmarsh CL
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):468-74. PubMed ID: 24467971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing.
    Blackburn JT; Padua DA
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):313-9. PubMed ID: 18037546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing.
    Kellis E; Kouvelioti V
    J Electromyogr Kinesiol; 2009 Feb; 19(1):55-64. PubMed ID: 17888681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between anterior tibial shear force during a jump landing task and quadriceps and hamstring strength.
    Bennett DR; Blackburn JT; Boling MC; McGrath M; Walusz H; Padua DA
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1165-71. PubMed ID: 18599168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled Gluteus Maximus and Gluteus Medius Recruitment Patterns Modulate Hip Adduction Variability During Single-Limb Step-Downs: A Cross-Sectional Study.
    Hollman JH; Beise NJ; Fischer ML; Stecklein TL
    J Sport Rehabil; 2020 Nov; 30(4):625-630. PubMed ID: 33217729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A resistance band increased internal hip abduction moments and gluteus medius activation during pre-landing and early-landing.
    Dai B; Heinbaugh EM; Ning X; Zhu Q
    J Biomech; 2014 Nov; 47(15):3674-80. PubMed ID: 25446268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.