BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 22840854)

  • 1. Colloidal interactions between monoclonal antibodies in aqueous solutions.
    Arzenšek D; Kuzman D; Podgornik R
    J Colloid Interface Sci; 2012 Oct; 384(1):207-16. PubMed ID: 22840854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of electrostatics in protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2014 Jul; 11(7):2475-89. PubMed ID: 24892385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal dispersion stability of CuPc aqueous dispersions and comparisons to predictions of the DLVO theory for spheres and parallel face-to-face cubes.
    Dong J; Corti DS; Franses EI; Zhao Y; Ng HT; Hanson E
    Langmuir; 2010 May; 26(10):6995-7006. PubMed ID: 20073525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular interactions of IgG1 monoclonal antibodies at high concentrations characterized by light scattering.
    Scherer TM; Liu J; Shire SJ; Minton AP
    J Phys Chem B; 2010 Oct; 114(40):12948-57. PubMed ID: 20849134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of colloidal stability of high concentration protein formulations.
    Garidel P; Blume A; Wagner M
    Pharm Dev Technol; 2015 May; 20(3):367-74. PubMed ID: 24392929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - prediction of viscosity through protein-protein interaction measurements.
    Neergaard MS; Kalonia DS; Parshad H; Nielsen AD; Møller EH; van de Weert M
    Eur J Pharm Sci; 2013 Jun; 49(3):400-10. PubMed ID: 23624326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of net charge and protein-protein interactions of different monoclonal antibodies.
    Lehermayr C; Mahler HC; Mäder K; Fischer S
    J Pharm Sci; 2011 Jul; 100(7):2551-62. PubMed ID: 21294130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific interactions in high concentration antibody solutions resulting in high viscosity.
    Yadav S; Liu J; Shire SJ; Kalonia DS
    J Pharm Sci; 2010 Mar; 99(3):1152-68. PubMed ID: 19705420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cosolute effects on the chemical potential and interactions of an IgG1 monoclonal antibody at high concentrations.
    Scherer TM
    J Phys Chem B; 2013 Feb; 117(8):2254-66. PubMed ID: 23330570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second Virial Coefficient As Determined from Protein Phase Behavior.
    Platten F; Hansen J; Wagner D; Egelhaaf SU
    J Phys Chem Lett; 2016 Oct; 7(19):4008-4014. PubMed ID: 27662500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies?
    Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):142-154. PubMed ID: 30017887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclonal antibody self-association, cluster formation, and rheology at high concentrations.
    Lilyestrom WG; Yadav S; Shire SJ; Scherer TM
    J Phys Chem B; 2013 May; 117(21):6373-84. PubMed ID: 23560896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of antibody-polyol interactions by static light scattering: implications for physical stability of protein formulations.
    Abbas SA; Sharma VK; Patapoff TW; Kalonia DS
    Int J Pharm; 2013 May; 448(2):382-9. PubMed ID: 23583711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions.
    Yadav S; Laue TM; Kalonia DS; Singh SN; Shire SJ
    Mol Pharm; 2012 Apr; 9(4):791-802. PubMed ID: 22352470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.
    Yadav S; Shire SJ; Kalonia DS
    J Pharm Sci; 2010 Dec; 99(12):4812-29. PubMed ID: 20821382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.
    Ma Y; Acosta DM; Whitney JR; Podgornik R; Steinmetz NF; French RH; Parsegian VA
    J Biol Phys; 2015 Jan; 41(1):85-97. PubMed ID: 25403822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies.
    Singh P; Roche A; van der Walle CF; Uddin S; Du J; Warwicker J; Pluen A; Curtis R
    Mol Pharm; 2019 Dec; 16(12):4775-4786. PubMed ID: 31613625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal model of lysozyme aqueous solutions: a computer simulation and theoretical study.
    Pellicane G
    J Phys Chem B; 2012 Feb; 116(7):2114-20. PubMed ID: 22277046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.