BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22841093)

  • 41. Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatography-tandem mass spectrometry.
    Nakagawa K; Ogawa K; Higuchi O; Kimura T; Miyazawa T; Hori M
    Anal Biochem; 2010 Sep; 404(2):217-22. PubMed ID: 20470744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro.
    Ademiluyi AO; Oboh G
    J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):17-25. PubMed ID: 22865445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean.
    McCue P; Kwon YI; Shetty K
    Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Screening α-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles.
    Zhang A; Ye F; Lu J; Zhao S
    Food Chem; 2013 Dec; 141(3):1854-9. PubMed ID: 23870901
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alpha-glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa.
    Matsuur H; Asakawa C; Kurimoto M; Mizutani J
    Biosci Biotechnol Biochem; 2002 Jul; 66(7):1576-8. PubMed ID: 12224646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies.
    Kwon HJ; Chung JY; Kim JY; Kwon O
    J Agric Food Chem; 2011 Apr; 59(7):3014-9. PubMed ID: 21370820
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract.
    Adisakwattana S; Chanathong B
    Eur Rev Med Pharmacol Sci; 2011 Jul; 15(7):803-8. PubMed ID: 21780550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alpha glucosidase inhibition by stem extract of Tinospora cordifolia.
    Chougale AD; Ghadyale VA; Panaskar SN; Arvindekar AU
    J Enzyme Inhib Med Chem; 2009 Aug; 24(4):998-1001. PubMed ID: 19555164
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition.
    Ryu HW; Lee BW; Curtis-Long MJ; Jung S; Ryu YB; Lee WS; Park KH
    J Agric Food Chem; 2010 Jan; 58(1):202-8. PubMed ID: 19954213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of alpha-glucosidase inhibitors from a new fermented tea obtained by tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves.
    Toshima A; Matsui T; Noguchi M; Qiu J; Tamaya K; Miyata Y; Tanaka T; Tanaka K
    J Sci Food Agric; 2010 Jul; 90(9):1545-50. PubMed ID: 20549810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hypoglycemic activity of the antioxidant saponarin, characterized as alpha-glucosidase inhibitor present in Tinospora cordifolia.
    Sengupta S; Mukherjee A; Goswami R; Basu S
    J Enzyme Inhib Med Chem; 2009 Jun; 24(3):684-90. PubMed ID: 18951283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (Meitaoza).
    Zhu YP; Yamaki K; Yoshihashi T; Ohnishi Kameyama M; Li XT; Cheng YQ; Mori Y; Li LT
    J Agric Food Chem; 2010 Apr; 58(7):4097-103. PubMed ID: 20196601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems.
    Wan C; Yuan T; Li L; Kandhi V; Cech NB; Xie M; Seeram NP
    Bioorg Med Chem Lett; 2012 Jan; 22(1):597-600. PubMed ID: 22079755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Screening of α-glucosidase inhibitors from green tea extracts using immobilized enzymes affinity capture combined with UHPLC-QTOF MS analysis.
    Deng S; Xia L; Xiao H
    Chem Commun (Camb); 2014 Mar; 50(20):2582-4. PubMed ID: 24463856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor.
    Xie W; Tanabe G; Matsuoka K; Amer MF; Minematsu T; Wu X; Yoshikawa M; Muraoka O
    Bioorg Med Chem; 2011 Apr; 19(7):2252-62. PubMed ID: 21420866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Partial biochemical characterization of alpha- and beta-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae).
    Ghadamyari M; Hosseininaveh V; Sharifi M
    C R Biol; 2010 Mar; 333(3):197-204. PubMed ID: 20338537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Bioactivity guided isolation of alpha-glucosidase inhibitor from whole herbs of Crossostephium chinense].
    Wu Q; Yang X; Zou L; Fu D
    Zhongguo Zhong Yao Za Zhi; 2009 Sep; 34(17):2206-11. PubMed ID: 19943487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acylated flavonol monorhamnosides, alpha-glucosidase inhibitors, from Machilus philippinensis.
    Lee SS; Lin HC; Chen CK
    Phytochemistry; 2008 Sep; 69(12):2347-53. PubMed ID: 18639907
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Screening and determination for potential α-glucosidase inhibitory constituents from Dalbergia odorifera T. Chen using ultrafiltration-LC/ESI-MS(n).
    Zhao C; Liu Y; Cong D; Zhang H; Yu J; Jiang Y; Cui X; Sun J
    Biomed Chromatogr; 2013 Dec; 27(12):1621-9. PubMed ID: 23813551
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward potent α-glucosidase inhibitors based on xanthones: a closer look into the structure-activity correlations.
    Li GL; He JY; Zhang A; Wan Y; Wang B; Chen WH
    Eur J Med Chem; 2011 Sep; 46(9):4050-5. PubMed ID: 21708415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.