These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22841481)

  • 1. Statistical analysis of surface electromyographic signal for the assessment of rectus femoris modalities of activation during gait.
    Di Nardo F; Fioretti S
    J Electromyogr Kinesiol; 2013 Feb; 23(1):56-61. PubMed ID: 22841481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is rectus femoris really a part of quadriceps? Assessment of rectus femoris function during gait in able-bodied adults.
    Nene A; Byrne C; Hermens H
    Gait Posture; 2004 Aug; 20(1):1-13. PubMed ID: 15196513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation of the rectus femoris during pre-swing diminishes hip and knee flexion during the swing phase of normal gait.
    Hernandez A; Lenz A; Thelen D
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):523-30. PubMed ID: 20934937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface electromyography does not accurately reflect rectus femoris activity during gait: impact of speed and crouch on vasti-to-rectus crosstalk.
    Barr KM; Miller AL; Chapin KB
    Gait Posture; 2010 Jul; 32(3):363-8. PubMed ID: 20691597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged swing phase rectus femoris activity is not associated with stiff-knee gait in children with cerebral palsy: a retrospective study of 407 limbs.
    Knuppe AE; Bishop NA; Clark AJ; Alderink GJ; Barr KM; Miller AL
    Gait Posture; 2013 Mar; 37(3):345-8. PubMed ID: 22959561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of muscles on knee flexion during the swing phase of gait.
    Piazza SJ; Delp SL
    J Biomech; 1996 Jun; 29(6):723-33. PubMed ID: 9147969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of two-joint rectus femoris and hamstrings during the swing phase of human walking and running.
    Prilutsky BI; Gregor RJ; Ryan MM
    Exp Brain Res; 1998 Jun; 120(4):479-86. PubMed ID: 9655233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the activation modalities of gastrocnemius lateralis and tibialis anterior during gait: a statistical analysis.
    Di Nardo F; Ghetti G; Fioretti S
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1428-33. PubMed ID: 23886485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative EMG activation patterns of school-age children during gait.
    Agostini V; Nascimbeni A; Gaffuri A; Imazio P; Benedetti MG; Knaflitz M
    Gait Posture; 2010 Jul; 32(3):285-9. PubMed ID: 20692162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of rectus femoris function during initial swing phase.
    Nene A; Mayagoitia R; Veltink P
    Gait Posture; 1999 Mar; 9(1):1-9. PubMed ID: 10575064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of muscles to terminal-swing knee motions vary with walking speed.
    Arnold AS; Schwartz MH; Thelen DG; Delp SL
    J Biomech; 2007; 40(16):3660-71. PubMed ID: 17659289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC; Goldberg SR; Pandy MG; Delp SL
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic and kinetic factors that correlate with improved knee flexion following treatment for stiff-knee gait.
    Goldberg SR; Ounpuu S; Arnold AS; Gage JR; Delp SL
    J Biomech; 2006; 39(4):689-98. PubMed ID: 16439238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the variability of vastii myoelectric activity in young healthy females during walking: a statistical gait analysis.
    Di Nardo F; Maranesi E; Mengarelli A; Ghetti G; Burattini L; Fioretti S
    J Electromyogr Kinesiol; 2015 Oct; 25(5):800-7. PubMed ID: 26198265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distal rectus femoris intramuscular lengthening for the correction of stiff-knee gait in children with cerebral palsy.
    Cruz AI; Ounpuu S; Deluca PA
    J Pediatr Orthop; 2011; 31(5):541-7. PubMed ID: 21654463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-EMG analysis for the quantification of thigh muscle dynamic co-contractions during normal gait.
    Strazza A; Mengarelli A; Fioretti S; Burattini L; Agostini V; Knaflitz M; Di Nardo F
    Gait Posture; 2017 Jan; 51():228-233. PubMed ID: 27825072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rectus femoris surface myoelectric signal cross-talk during static contractions.
    Byrne CA; Lyons GM; Donnelly AE; O'Keeffe DT; Hermens H; Nene A
    J Electromyogr Kinesiol; 2005 Dec; 15(6):564-75. PubMed ID: 15946862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cadaver knee simulator to evaluate the biomechanics of rectus femoris transfer.
    Anderson MC; Brown NA; Bachus KN; Macwilliams BA
    Gait Posture; 2009 Jul; 30(1):87-92. PubMed ID: 19403312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic and kinetic outcomes after identical multilevel soft tissue surgery in children with cerebral palsy.
    Adolfsen SE; Ounpuu S; Bell KJ; DeLuca PA
    J Pediatr Orthop; 2007 Sep; 27(6):658-67. PubMed ID: 17717467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.