These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22841530)

  • 1. Surface topographical factors influencing bacterial attachment.
    Crawford RJ; Webb HK; Truong VK; Hasan J; Ivanova EP
    Adv Colloid Interface Sci; 2012 Nov; 179-182():142-9. PubMed ID: 22841530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial attachment on sub-nanometrically smooth titanium substrata.
    Webb HK; Boshkovikj V; Fluke CJ; Truong VK; Hasan J; Baulin VA; Lapovok R; Estrin Y; Crawford RJ; Ivanova EP
    Biofouling; 2013; 29(2):163-70. PubMed ID: 23327438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nano-topography on bacterial attachment.
    Mitik-Dineva N; Wang J; Mocanasu RC; Stoddart PR; Crawford RJ; Ivanova EP
    Biotechnol J; 2008 Apr; 3(4):536-44. PubMed ID: 18246568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention.
    Ivanova EP; Truong VK; Wang JY; Berndt CC; Jones RT; Yusuf II; Peake I; Schmidt HW; Fluke C; Barnes D; Crawford RJ
    Langmuir; 2010 Feb; 26(3):1973-82. PubMed ID: 19842625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium.
    Truong VK; Lapovok R; Estrin YS; Rundell S; Wang JY; Fluke CJ; Crawford RJ; Ivanova EP
    Biomaterials; 2010 May; 31(13):3674-83. PubMed ID: 20163851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial attachment over a wide range of ionic strengths.
    Morisaki H; Tabuchi H
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):51-5. PubMed ID: 19595583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling.
    Siegismund D; Undisz A; Germerodt S; Schuster S; Rettenmayr M
    Acta Biomater; 2014 Jan; 10(1):267-75. PubMed ID: 24071002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis.
    Tang H; Cao T; Liang X; Wang A; Salley SO; McAllister J; Ng KY
    J Biomed Mater Res A; 2009 Feb; 88(2):454-63. PubMed ID: 18306290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roughness parameters for standard description of surface nanoarchitecture.
    Webb HK; Truong VK; Hasan J; Fluke C; Crawford RJ; Ivanova EP
    Scanning; 2012; 34(4):257-63. PubMed ID: 22331659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in colonisation of five marine bacteria on two types of glass surfaces.
    Mitik-Dineva N; Wang J; Truong VK; Stoddart PR; Malherbe F; Crawford RJ; Ivanova EP
    Biofouling; 2009 Oct; 25(7):621-31. PubMed ID: 20183121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and experiments of the adhesion force distribution between particles and a surface.
    You S; Wan MP
    Langmuir; 2014 Jun; 30(23):6808-18. PubMed ID: 24849548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations.
    Quirynen M; Bollen CM; Papaioannou W; Van Eldere J; van Steenberghe D
    Int J Oral Maxillofac Implants; 1996; 11(2):169-78. PubMed ID: 8666447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes.
    Subramani A; Huang X; Hoek EM
    J Colloid Interface Sci; 2009 Aug; 336(1):13-20. PubMed ID: 19406423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns.
    Perera-Costa D; Bruque JM; González-Martín ML; Gómez-García AC; Vadillo-Rodríguez V
    Langmuir; 2014 Apr; 30(16):4633-41. PubMed ID: 24697600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies.
    Wang Y; Lee SM; Dykes G
    Crit Rev Microbiol; 2015; 41(4):452-64. PubMed ID: 24635643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion.
    Aykent F; Yondem I; Ozyesil AG; Gunal SK; Avunduk MC; Ozkan S
    J Prosthet Dent; 2010 Apr; 103(4):221-7. PubMed ID: 20362765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal.
    Whitehead KA; Rogers D; Colligon J; Wright C; Verran J
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):44-53. PubMed ID: 16822658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do bacteria differentiate between degrees of nanoscale surface roughness?
    Bazaka K; Crawford RJ; Ivanova EP
    Biotechnol J; 2011 Sep; 6(9):1103-14. PubMed ID: 21910258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale topography mediates the adhesion of F-actin.
    Caporizzo MA; Sun Y; Goldman YE; Composto RJ
    Langmuir; 2012 Aug; 28(33):12216-24. PubMed ID: 22839968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of few-asperity contacts in adhesion.
    Thoreson EJ; Martin J; Burnham NA
    J Colloid Interface Sci; 2006 Jun; 298(1):94-101. PubMed ID: 16376923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.