BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 22841757)

  • 1. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals.
    Chervona Y; Costa M
    Free Radic Biol Med; 2012 Sep; 53(5):1041-7. PubMed ID: 22841757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium.
    Arita A; Costa M
    Metallomics; 2009; 1(3):222-8. PubMed ID: 20461219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metals, toxicity and oxidative stress.
    Valko M; Morris H; Cronin MT
    Curr Med Chem; 2005; 12(10):1161-208. PubMed ID: 15892631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic enzymes influenced by oxidative stress and hypoxia mimetic in osteoblasts are differentially expressed in patients with osteoporosis and osteoarthritis.
    Vrtačnik P; Zupan J; Mlakar V; Kranjc T; Marc J; Kern B; Ostanek B
    Sci Rep; 2018 Nov; 8(1):16215. PubMed ID: 30385847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line.
    Permenter MG; Lewis JA; Jackson DA
    PLoS One; 2011; 6(11):e27730. PubMed ID: 22110744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in metal-induced oxidative stress and human disease.
    Jomova K; Valko M
    Toxicology; 2011 May; 283(2-3):65-87. PubMed ID: 21414382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects.
    Arita A; Shamy MY; Chervona Y; Clancy HA; Sun H; Hall MN; Qu Q; Gamble MV; Costa M
    J Trace Elem Med Biol; 2012 Jun; 26(2-3):174-8. PubMed ID: 22633395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers.
    Cantone L; Nordio F; Hou L; Apostoli P; Bonzini M; Tarantini L; Angelici L; Bollati V; Zanobetti A; Schwartz J; Bertazzi PA; Baccarelli A
    Environ Health Perspect; 2011 Jul; 119(7):964-9. PubMed ID: 21385672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases.
    Sundar IK; Yao H; Rahman I
    Antioxid Redox Signal; 2013 May; 18(15):1956-71. PubMed ID: 22978694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of heavy metals on human metabolism.
    Fu Z; Xi S
    Toxicol Mech Methods; 2020 Mar; 30(3):167-176. PubMed ID: 31818169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress-mediated alterations in histone post-translational modifications.
    García-Giménez JL; Garcés C; Romá-Mateo C; Pallardó FV
    Free Radic Biol Med; 2021 Jul; 170():6-18. PubMed ID: 33689846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic targets of some toxicologically relevant metals: a review of the literature.
    Cheng TF; Choudhuri S; Muldoon-Jacobs K
    J Appl Toxicol; 2012 Sep; 32(9):643-53. PubMed ID: 22334439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulation by histone-modifying enzymes under hypoxic conditions: a focus on histone methylation and acetylation.
    Kim J; Lee H; Yi SJ; Kim K
    Exp Mol Med; 2022 Jul; 54(7):878-889. PubMed ID: 35869366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage.
    Ercal N; Gurer-Orhan H; Aykin-Burns N
    Curr Top Med Chem; 2001 Dec; 1(6):529-39. PubMed ID: 11895129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative Stress and Heavy Metals in Plants.
    Fryzova R; Pohanka M; Martinkova P; Cihlarova H; Brtnicky M; Hladky J; Kynicky J
    Rev Environ Contam Toxicol; 2018; 245():129-156. PubMed ID: 29032515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications.
    Desaulniers D; Vasseur P; Jacobs A; Aguila MC; Ertych N; Jacobs MN
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium.
    Salnikow K; Zhitkovich A
    Chem Res Toxicol; 2008 Jan; 21(1):28-44. PubMed ID: 17970581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-induced carcinogenesis, oxidative stress and hypoxia signalling.
    Galanis A; Karapetsas A; Sandaltzopoulos R
    Mutat Res; 2009 Mar; 674(1-2):31-5. PubMed ID: 19022395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.