These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22841791)

  • 1. BnC15 and BnATA20, the different putative components, control anther development in Brassica napus L.
    Wan L; Hu Q; Hong D; Yang G
    Gene; 2012 Oct; 507(1):9-19. PubMed ID: 22841791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus.
    Yi B; Zeng F; Lei S; Chen Y; Yao X; Zhu Y; Wen J; Shen J; Ma C; Tu J; Fu T
    Plant J; 2010 Sep; 63(6):925-38. PubMed ID: 20598092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter.
    Geddy R; Mahé L; Brown GG
    Plant J; 2005 Feb; 41(3):333-45. PubMed ID: 15659093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a Brassica napus cDNA corresponding to a B-class floral development gene.
    Pylatuik JD; Lindsay DL; Davis AR; Bonham-Smith PC
    J Exp Bot; 2003 Oct; 54(391):2385-7. PubMed ID: 12909692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.
    Teixeira RT; Farbos I; Glimelius K
    Plant J; 2005 Jun; 42(5):731-42. PubMed ID: 15918886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus.
    Zhou Z; Dun X; Xia S; Shi D; Qin M; Yi B; Wen J; Shen J; Ma C; Tu J; Fu T
    J Exp Bot; 2012 Mar; 63(5):2041-58. PubMed ID: 22174440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Carlsson J; Lagercrantz U; Sundström J; Teixeira R; Wellmer F; Meyerowitz EM; Glimelius K
    Plant J; 2007 Feb; 49(3):452-62. PubMed ID: 17217466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression, localization and function of a cis-prenyltransferase in the tapetum and microspores of lily anthers.
    Liu MC; Wang BJ; Huang JK; Wang CS
    Plant Cell Physiol; 2011 Sep; 52(9):1487-500. PubMed ID: 21757455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton.
    Wang XL; Li XB
    Plant J; 2009 Feb; 57(3):473-86. PubMed ID: 18826432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis and expression of a floral organ-specific polygalacturonase gene isolated from rapeseed (Brassica napus L.).
    Wan L; Xia X; Hong D; Yang G
    Mol Biol Rep; 2010 Dec; 37(8):3851-62. PubMed ID: 20213507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus.
    Dun X; Zhou Z; Xia S; Wen J; Yi B; Shen J; Ma C; Tu J; Fu T
    Plant J; 2011 Nov; 68(3):532-45. PubMed ID: 21756273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A.
    Chen Y; Lei S; Zhou Z; Zeng F; Yi B; Wen J; Shen J; Ma C; Tu J; Fu T
    Plant Cell Rep; 2009 Sep; 28(9):1363-72. PubMed ID: 19562345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis.
    Song L; Zhou Z; Tang S; Zhang Z; Xia S; Qin M; Li B; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J
    Plant Cell Physiol; 2016 Sep; 57(9):1972-84. PubMed ID: 27388342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance.
    Dalal M; Tayal D; Chinnusamy V; Bansal KC
    J Biotechnol; 2009 Jan; 139(2):137-45. PubMed ID: 19014980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic changes accompany developmental programmed cell death in tapetum cells.
    Solís MT; Chakrabarti N; Corredor E; Cortés-Eslava J; Rodríguez-Serrano M; Biggiogera M; Risueño MC; Testillano PS
    Plant Cell Physiol; 2014 Jan; 55(1):16-29. PubMed ID: 24151205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene.
    Roberts MR; Foster GD; Blundell RP; Robinson SW; Kumar A; Draper J; Scott R
    Plant J; 1993 Jan; 3(1):111-20. PubMed ID: 8401599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal tapetum development and energy metabolism associated with sterility in SaNa-1A CMS of Brassica napus L.
    Du K; Xiao Y; Liu Q; Wu X; Jiang J; Wu J; Fang Y; Xiang Y; Wang Y
    Plant Cell Rep; 2019 May; 38(5):545-558. PubMed ID: 30706138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L.
    Sun Y; Zhang D; Wang Z; Guo Y; Sun X; Li W; Zhi W; Hu S
    BMC Plant Biol; 2020 Jan; 20(1):8. PubMed ID: 31906856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification, subcellular localization, and developmental studies of oleosins in the anther of Brassica napus.
    Wang TW; Balsamo RA; Ratnayake C; Platt KA; Ting JT; Huang AH
    Plant J; 1997 Mar; 11(3):475-87. PubMed ID: 9107037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis.
    Zhang ZB; Zhu J; Gao JF; Wang C; Li H; Li H; Zhang HQ; Zhang S; Wang DM; Wang QX; Huang H; Xia HJ; Yang ZN
    Plant J; 2007 Nov; 52(3):528-38. PubMed ID: 17727613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.