BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22841792)

  • 1. Phylogenetic and molecular evolution of the ADAM (A Disintegrin And Metalloprotease) gene family from Xenopus tropicalis, to Mus musculus, Rattus norvegicus, and Homo sapiens.
    Long J; Li M; Ren Q; Zhang C; Fan J; Duan Y; Chen J; Li B; Deng L
    Gene; 2012 Oct; 507(1):36-43. PubMed ID: 22841792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation and divergence of ADAM family proteins in the Xenopus genome.
    Wei S; Whittaker CA; Xu G; Bridges LC; Shah A; White JM; Desimone DW
    BMC Evol Biol; 2010 Jul; 10():211. PubMed ID: 20630080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci.
    Bahudhanapati H; Bhattacharya S; Wei S
    PLoS One; 2015; 10(8):e0136281. PubMed ID: 26308360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and comparative genomic analysis of intronless Adams with testicular gene expression.
    Choi I; Oh J; Cho BN; Ahnn J; Jung YK; Han Kim D; Cho C
    Genomics; 2004 Apr; 83(4):636-46. PubMed ID: 15028286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic analysis and positive-selection site detecting of vascular endothelial growth factor family in vertebrates.
    He W; Tang Y; Qi B; Lu C; Qin C; Wei Y; Yi J; Chen M
    Gene; 2014 Feb; 535(2):345-52. PubMed ID: 24200960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive selection in the adhesion domain of Mus sperm Adam genes through gene duplications and function-driven gene complex formations.
    Grayson P; Civetta A
    BMC Evol Biol; 2013 Sep; 13():217. PubMed ID: 24079728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionarily plastic regions at human 3p21.3 coincide with tumor breakpoints identified by the "elimination test".
    Darai E; Kost-Alimova M; Kiss H; Kansoul H; Klein G; Imreh S
    Genomics; 2005 Jul; 86(1):1-12. PubMed ID: 15913951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active metalloproteases of the A Disintegrin and Metalloprotease (ADAM) family: biological function and structure.
    Klein T; Bischoff R
    J Proteome Res; 2011 Jan; 10(1):17-33. PubMed ID: 20849079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancreatic-type ribonuclease 1 gene duplications in rat species.
    Dubois JY; Jekel PA; Mulder PP; Bussink AP; Catzeflis FM; Carsana A; Beintema JJ
    J Mol Evol; 2002 Nov; 55(5):522-33. PubMed ID: 12399926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of ADAM gene family in eukaryotes.
    Souza JSM; Lisboa ABP; Santos TM; Andrade MVS; Neves VBS; Teles-Souza J; Jesus HNR; Bezerra TG; Falcão VGO; Oliveira RC; Del-Bem LE
    Genomics; 2020 Sep; 112(5):3108-3116. PubMed ID: 32437852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence variation and molecular evolution of hormone-sensitive lipase genes in species of bovidae.
    Ma Z; Zhong J; Cheng Z; Liu L; Chang H; Luo X
    J Genet Genomics; 2007 Jan; 34(1):26-34. PubMed ID: 17469775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary scenarios of Notch proteins.
    Theodosiou A; Arhondakis S; Baumann M; Kossida S
    Mol Biol Evol; 2009 Jul; 26(7):1631-40. PubMed ID: 19369596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of prolactin gene family in rodents.
    Li Y; Zhang YP
    Yi Chuan Xue Bao; 2006 Jul; 33(7):590-7. PubMed ID: 16875316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sexual selection and the molecular evolution of ADAM proteins.
    Finn S; Civetta A
    J Mol Evol; 2010 Sep; 71(3):231-40. PubMed ID: 20730583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amphibian globin gene repertoire as revealed by the Xenopus genome.
    Fuchs C; Burmester T; Hankeln T
    Cytogenet Genome Res; 2006; 112(3-4):296-306. PubMed ID: 16484786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic organization of the immunoglobulin light chain gene loci in Xenopus tropicalis: evolutionary implications.
    Qin T; Ren L; Hu X; Guo Y; Fei J; Zhu Q; Butler JE; Wu C; Li N; Hammarstrom L; Zhao Y
    Dev Comp Immunol; 2008; 32(2):156-65. PubMed ID: 17624429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants.
    Volokita M; Rosilio-Brami T; Rivkin N; Zik M
    Mol Biol Evol; 2011 Jan; 28(1):551-65. PubMed ID: 20801908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary relationships of the Tas2r receptor gene families in mouse and human.
    Conte C; Ebeling M; Marcuz A; Nef P; Andres-Barquin PJ
    Physiol Genomics; 2003 Jun; 14(1):73-82. PubMed ID: 12734386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function.
    Garcia-España A; Chung PJ; Zhao X; Lee A; Pellicer A; Yu J; Sun TT; Desalle R
    Mol Phylogenet Evol; 2006 Nov; 41(2):355-67. PubMed ID: 16814572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.